Transcriptional activation of the macrophage-colony stimulating factor gene by minimally modified LDL. Involvement of nuclear factor-kappa B

Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1591-8. doi: 10.1161/01.atv.15.10.1591.

Abstract

Minimally modified LDL (MM-LDL), obtained by mild iron oxidation or prolonged storage at 4 degrees C, has been shown to induce the expression of macrophage-colony stimulating factor (M-CSF) in cultured aortic endothelial cells. To examine whether other cell types also respond to MM-LDL, we investigated its effect on the expression of M-CSF mRNA in mouse L-cells and human aortic smooth muscle cells. Both L-cells and human aortic smooth muscle cells showed increased levels of M-CSF mRNA in response to 10 to 200 micrograms/mL MM-LDL in a dose-dependent manner. This allowed us to use mouse L-cells as a model to study the mechanism involved in MM-LDL-mediated increase in M-CSF mRNA. Nuclear runon assays showed that M-CSF gene transcription was activated by MM-LDL. In the present study, we identified specific elements that conferred MM-LDL-mediated transcriptional activation of the human M-CSF gene. Chimeric constructs containing sequential deletions in the 5'-promoter region of the M-CSF gene linked to a reporter chloramphenicol acetyltransferase (CAT) gene were transfected into mouse L-cells. The human M-CSF promoter region extending upstream from the transcription start site to nucleotide -406 showed maximum induction of CAT activity by MM-LDL. Induction of CAT activity was drastically reduced, with a deletion plasmid lacking the promoter region -406 to -344. A functional nuclear factor (NF)-kappa B binding site present in this critical region was required for MM-LDL-mediated induction of CAT activity since an internal deletion construct lacking this element showed significant loss of transcriptional activation.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Humans
  • L Cells
  • Lipid Peroxidation
  • Lipoproteins, LDL / metabolism
  • Lipoproteins, LDL / pharmacology*
  • Macrophage Colony-Stimulating Factor / biosynthesis*
  • Macrophage Colony-Stimulating Factor / genetics
  • Mice
  • Molecular Sequence Data
  • Muscle, Smooth, Vascular / metabolism*
  • NF-kappa B / metabolism*
  • Promoter Regions, Genetic / genetics
  • RNA, Messenger / analysis
  • Transcriptional Activation

Substances

  • Lipoproteins, LDL
  • NF-kappa B
  • RNA, Messenger
  • Macrophage Colony-Stimulating Factor