Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Oct;112(2):247-63.
doi: 10.1016/0300-9629(95)00099-2.

gamma-Aminobutyric Acid (GABA) Metabolism in Mammalian Neural and Nonneural Tissues

Affiliations
Review

gamma-Aminobutyric Acid (GABA) Metabolism in Mammalian Neural and Nonneural Tissues

N J Tillakaratne et al. Comp Biochem Physiol A Physiol. .

Abstract

4-Aminobutyric acid (GABA), a major inhibitory neurotransmitter of mammalian central nervous system, is found in a wide range of organisms, from prokaryotes to vertebrates. GABA is widely distributed in nonneural tissue including peripheral nervous and endocrine systems. GABA acts on GABAA and GABAB receptors. GABAA receptors are ligand-gated chloride channels modulated by a variety of drugs. GABAB receptors are essentially presynaptic, usually coupled to potassium or calcium channels, and they function via a GTP binding protein. In neural and nonneural tissues, GABA is metabolized by three enzymes--glutamic acid decarboxylase (GAD), which produces GABA from glutamic acid, and the catabolic enzymes GABA-transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). Production of succinic acid by SSADH allows entry of the GABA carbon skeleton into the tricarboxylic acid cycle. Alternate sources of GABA include putrescine, spermine, spermidine and ornithine, which produce GABA via deamination and decarboxylation reactions, while L-glutamine is an additional source of glutamic acid via deamination. GAD from mammalian brain occurs in two molecular forms, GAD65 and GAD67 (referring to subunit relative molecular weight (Mr) in kilodaltons). These different forms of GAD are the product of different genes, differing in nucleotide sequence, immunoreactivity and subcellular localization. The presence and characteristics of GAD have been investigated in a wide variety of nonneural tissues including liver, kidney, pancreas, testis, ova, oviduct, adrenal, sympathetic ganglia, gastrointestinal tract and circulating erythrocytes. In some tissues, one form (GAD65 or GAD67) predominates. GABA-T has been located in most of the same tissues, primarily through histochemical and/or immunochemical methods; GABA-T is also present in a variety of circulating cells, including platelets and lymphocytes. SSADH, the final enzyme GABA catabolism, has been detected in some of the tissues in which GAD and GABA-T have been identified, although the presence of this enzyme has not been in mammalian pancreas, ova, oviduct, testis or sympathetic ganglia.

Similar articles

See all similar articles

Cited by 48 articles

See all "Cited by" articles
Feedback