The pegs on the decorated tubules of the contractile vacuole complex of Paramecium are proton pumps

J Cell Sci. 1995 Oct:108 ( Pt 10):3163-70. doi: 10.1242/jcs.108.10.3163.


Our previous study has shown that the decorated tubules (collectively known as the decorated spongiome) of the contractile vacuole complex (CVC) in Paramecium are the site of fluid segregation, as the binding of microinjected monoclonal antibody (mAb) DS-1 to the tubules reduced the CVC's fluid output. In this study, we showed by immunogold labeling on cryosections that the antigenic sites for mAb DS-1 were located on the 15 nm 'pegs' protruding from the cytosolic surface of the decorated tubules. In immunofluorescence studies, both polyclonal antibodies against the subunits of the V-ATPase of Dictyostelium discoideum and against the 57 kDa B-subunit of the V-ATPase of chromaffin granules gave identical labeling patterns to that produced by mAb DS-1. On cryosections, all three antigens were located most consistently near or on the pegs of the decorated tubules. These data support the notion that the pegs on the membrane of the decorated tubules represent the V1 complex of a proton pump. Concanamycin B, a potent inhibitor of V-ATPase activity and of acidification of lysosomes and endosomes, strongly and reversibly inhibited fluid output from the CVC but had minimal effect on the integrity of the decorated spongiome as observed by immunofluorescence. Such inhibition suggests that a V-ATPase is intimately involved in fluid segregation. Exposing Paramecium to 12 degrees C or 1 degrees C for 30 minutes resulted in the dissociation of the decorated tubules from the smooth spongiome that borders the collecting canals; thus the DS-1-reactive A4 antigen, the 75 kDa and 66 kDa antigens were all found dispersed in the cytosol.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cytoplasmic Granules / metabolism
  • Microscopy, Electron
  • Paramecium / metabolism*
  • Paramecium / ultrastructure
  • Proton Pumps / analysis*


  • Proton Pumps