Bipedal reflex coordination to tactile stimulation of the sural nerve during human running

J Neurophysiol. 1995 May;73(5):1947-64. doi: 10.1152/jn.1995.73.5.1947.

Abstract

1. Cutaneous reflex responses were elicited during human running (8 km/h) on a treadmill by electrical stimulation of the sural nerve at the ankle. Stimulus trains (5 pulses of 1 ms at 200 Hz) at three nonnociceptive intensities, which were 1.5, 2.0, and 2.5 times perception threshold (PT), were delivered at 16 phases of the step cycle. For 11 subjects the surface electromyographic (EMG) activity of both the ipsilateral and contralateral long head of the biceps femoris (iBF and cBF, respectively), the semitendinosus (iST and cST), the rectus femoris (iRF and cRF), and the tibialis anterior (iTA and cTA) were recorded. 2. During human running nonnociceptive sural nerve stimulation appears to be sufficient to elicit large, widespread and statistically significant reflex responses, with a latency of approximately 80 ms and a duration of approximately 30 ms. These reflex responses seem to be an elementary property of human locomotion. This is indicated by the occurrence of the responses in all subjects, the consistency of most of the reflex patterns across the subjects and, apart from a small amount of habituation, the reproducibility of the responses during the course of the experiment. 3. The responses are modulated continuously throughout the step cycle such that their magnitude does not in general covary with the background locomotor activities. This is observed most clearly in iST, iTA, and cTA for which statistically significant reflex reversals are demonstrated, and in cRF and cTA for which the responses are gated during most of the step cycle. 4. The response magnitude generally increases as a function of increasing intensity, whereas the phase-dependent reflex modulation is intensity independent. 5. A functional dissociation within the ipsilateral hamstring muscles is demonstrated: the iBF and iST show an antagonistic reflex pattern (facilitatory and suppressive, respectively) during the periods of synergistic background locomotor activity in the step cycle. Contralaterally, however, the cBF and cST are reflexively activated as close synergists during these periods. 6. The reflex responses and their phase-dependent modulation are different for the homologous muscles in the two legs. Yet, some similarities are observed. These are present rather with respect to the phase of the corresponding leg than with respect to the phase of the stimulated leg. Both observations suggest that the phase-dependent reflex modulation is controlled separately in the ipsilateral and contralateral legs. 7. The response simultaneity in all investigated muscles supports the notion of a coordinated cutaneous interlimb reflex during human running.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Ankle Joint / physiology
  • Female
  • Humans
  • Locomotion / physiology
  • Male
  • Middle Aged
  • Muscle Contraction / physiology*
  • Physical Stimulation
  • Reflex / physiology*
  • Running / physiology*
  • Sural Nerve / physiology*
  • Tibia / physiology
  • Touch / physiology*