Drospirenone (ZK 30595; 6 beta, 7 beta, 15 beta, 16 beta-dimethylen-3-oxo-17 alpha-pregn-4-ene-21, 17-carbolactone) is a novel progestogen under clinical development. Drospirenone is characterized by an innovative pharmacodynamic profile which is very closely related to that of progesterone. Potential applications include oral contraception, hormone replacement therapy and treatment of hormonal disorders. The pharmacological properties of drospirenone were investigated in vitro by receptor binding and transactivation experiments and in vivo in appropriate animal models. In qualitative agreement with progesterone, the compound binds strongly to the progesterone and the mineralocorticoid receptor and with lower affinity to androgen and glucocorticoid receptors. There is no detectable binding to the estrogen receptor. Steroid hormone agonistic and antagonistic activities of progesterone and drospirenone were compared in transactivation experiments. Individual steroid hormone receptors were artificially expressed together with a reporter gene in appropriate cell lines. Both hormones were unable to induce any androgen receptor-mediated agonistic activity. Rather, both progesterone and drospirenone distinctly antagonized androgen-stimulated transcriptional activation. Likewise, both compounds only very weakly activated the mineralocorticoid receptor but showed potent aldosterone antagonistic activity. Drospirenone did not induce glucocorticoid receptor-driven transactivation. Progesterone was a weak agonist in this respect. Drospirenone exerts potent progestogenic and antigonadotropic activity which was studied in various animal species. It efficiently promotes the maintenance of pregnancy in ovariectomized rats, inhibits ovulation in rats and mice and stimulates endometrial transformation in the rabbit. Furthermore, drospirenone shows potent antigonadotropic, i.e., testosterone-lowering activity in male cynomolgus monkeys. The progestogenic potency of drospirenone was found to be in the range of that of norethisterone acetate. The majority of clinically used progestogens are androgenic. Drospirenone, like progesterone, has no androgenic but rather an antiandrogenic effect. This property was demonstrated in castrated, testosterone propionate substituted male rats by a dose-dependent inhibition of accessory sex organ growth (seminal vesicles, prostate). In this model, the potency of drospirenone was about a third that of cyproterone acetate. Drospirenone, like progesterone, shows antimineralocorticoid activity, which causes moderately increased sodium and water excretion. This is an outstanding characteristic which has not been described for any other synthetic progestogen before. Drospirenone is eight to ten times more effective in this respect than spironolactone. The natriuretic effect was demonstrable for at least three weeks upon daily treatment of rats with a dose of 10 mg/animal. Drospirenone is devoid of any estrogenic, glucocorticoid or antiglucocorticoid activity. In summary, drospirenone, like progesterone, combines potent progestogenic with antimineralocorticoid and antiandrogenic activity in a similar dose range.(ABSTRACT TRUNCATED AT 400 WORDS)