Distinguishable functions for engrailed and invected in anterior-posterior patterning in the Drosophila wing

Nature. 1995 Aug 3;376(6539):424-7. doi: 10.1038/376424a0.


Subdivision of the limb primordia into compartments initiates pattern formation in the developing limbs. Interaction between distinctly specific cells in adjacent compartments leads to localized expression of the secreted signalling molecules Wingless (Wg) or Decapentaplegic (Dpp), which in turn organize pattern and control growth of the limbs. The homeobox gene engrailed has been implicated in specification of posterior cell fate, whereas the LIM/homeobox gene, apterous, specifies dorsal fate. Removing apterous activity causes a complete transformation from dorsal to ventral fate and leads to the formation of an ectopic dorsal-ventral boundary organizer. By contrast, removing engrailed activity causes incomplete morphological transformation from posterior to anterior fate in the wing, and fails to produce an ectopic anterior-posterior organizer (reviewed in ref.2). Complete transformation can only be effected by simultaneously eliminating activity of engrailed and its homologue invected. Here we show that invected functions principally to specify posterior cell fate. Thus establishment of the anterior-posterior organizer and control of compartment identity are genetically distinguishable, and invected may perform a discrete subset of functions previously ascribed to engrailed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Drosophila / embryology*
  • Drosophila / genetics
  • Drosophila Proteins*
  • Homeodomain Proteins / genetics*
  • Homeodomain Proteins / physiology
  • Insect Hormones / genetics*
  • Insect Hormones / physiology
  • Mutation
  • Transcription Factors / genetics*
  • Transcription Factors / physiology
  • Wings, Animal / embryology


  • Drosophila Proteins
  • En protein, Drosophila
  • Homeodomain Proteins
  • Insect Hormones
  • Transcription Factors
  • inv protein, Drosophila