Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 82 (3), 415-24

Decoding of Cytosolic Calcium Oscillations in the Mitochondria


Decoding of Cytosolic Calcium Oscillations in the Mitochondria

G Hajnóczky et al. Cell.


Frequency-modulated oscillations of cytosolic Ca2+ ([Ca2+]c) are believed to be important in signal transduction, but it has been difficult to correlate [Ca2+]c oscillations directly with the activity of Ca(2+)-regulated targets. We have studied the control of Ca(2+)-sensitive mitochondrial dehydrogenases (CSMDHs) by monitoring mitochondrial Ca2+ ([Ca2+]m) and the redox state of flavoproteins and pyridine nucleotides simultaneously with [Ca2+]c in single hepatocytes. Oscillations of [Ca2+]c induced by IP3-dependent hormones were efficiently transmitted to the mitochondria as [Ca2+]m oscillations. Each [Ca2+]m spike was sufficient to cause a maximal transient activation of the CSMDHs and [Ca2+]m oscillations at frequencies above 0.5 per minute caused a sustained activation of mitochondrial metabolism. By contrast, sustained [Ca2+]c increases yielded only transient CSMDH activation, and slow or partial [Ca2+]c elevations were ineffective in increasing [Ca2+]m or stimulating CSMDHs. We conclude that the mitochondria are tuned to oscillating [Ca2+]c signals, the frequency of which can control the CSMDHs over the full range of potential activities.

Similar articles

See all similar articles

Cited by 355 PubMed Central articles

See all "Cited by" articles

Publication types

LinkOut - more resources