Evaluation of carbon dioxide rebreathing during pressure support ventilation with airway management system (BiPAP) devices

Chest. 1995 Sep;108(3):772-8. doi: 10.1378/chest.108.3.772.


The purpose of this study was to evaluate whether carbon dioxide (CO2) rebreathing occurs in acute respiratory failure patients ventilated using the standard airway management system (BiPAP pressure support ventilator; Respironics; Murrysville, Pa) with positive inspiratory airway pressure and a minimal level of positive end-expiratory pressure (PEEP) and whether any CO2 rebreathing may be efficiently prevented by the addition of a nonrebreathing valve to the BiPAP system circuit. In the first part of the study, the standard device was tested on a lung model with a nonrebreathing valve (BiPAP-NRV) and with the usual Whisper Swivel connector (BiPAP-uc). With the BiPAP-uc device, the resident volume of expired air in the inspiratory circuit at the end of expiration (RVEA) was 55% of the tidal volume (VT) when the inspiratory pressure was 10 cm H2O and the frequency was at 15 cycles per minute. The BiPAP-NRV device efficiently prevented CO2 rebreathing but resulted in a slight decrease in VT, which was due to a significant increase in external PEEP (2.4 vs 1.3 cm H2O) caused by the additional expiratory valve resistance. For similar reasons, both the pressure swing necessary to trigger pressure support and the imposed expiratory work were increased in the lung model when the nonrebreathing valve was used. In the second part of the study, seven patients weaned from mechanical ventilation were investigated using a randomized crossover design to compare three situations: pressure support ventilation with a conventional intensive care ventilator (CIPS), BiPAP system use, and BiPAP-NRV. When we compared the BiPAP system use with the other two systems, we observed no significant effect on blood gases but found significant increases in VT, minute ventilation, and work of breathing. These findings are experimental and are clinical evidence that significant CO2 rebreathing occurs with the standard BiPAP system. This drawback can be overcome by using a non-rebreathing valve, but only at the expense of greater expiratory resistance.

Publication types

  • Clinical Trial
  • Comparative Study
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Carbon Dioxide* / adverse effects
  • Carbon Dioxide* / analysis
  • Cross-Over Studies
  • Female
  • Humans
  • Lung / physiology
  • Male
  • Middle Aged
  • Models, Biological
  • Positive-Pressure Respiration* / instrumentation
  • Positive-Pressure Respiration* / methods
  • Respiratory Insufficiency / therapy*
  • Ventilator Weaning
  • Ventilators, Mechanical*
  • Work of Breathing


  • Carbon Dioxide