This paper considers the neural mechanisms underlying a particular kind of non-photic phase shifting, that produced by novelty-induced wheel running in the hamster. The projection from the intergeniculate leaflet (IGL) to the suprachiasmatic nucleus (SCN) appears to be an important part of the mechanism mediating such phase shifts. A number of experiments support this view. First, expression of immediate-early genes in the IGL is induced by non-photic phase-shifting stimuli. Second, Fos-like immunoreactivity in the IGL co-localizes with neuropeptide Y (NPY) immunoreactivity. Third, direct application of NPY to the SCN produces phase shifts which do not depend on the hamsters becoming active following the injections. Fourth, blocking the normal actions of NPY at the SCN blocks or greatly attenuates the phase shifting that is normally produced by novelty-induced wheel running. Progress on the physiological basis of phase shifts associated with activity, or a correlate, depends on understanding the behavioural aspects of this phenomenon. The activity-shift response curve is especially useful.