Regressive Development in Neuronal Structure During Song Learning in Birds

J Neurobiol. 1995 Jun;27(2):204-15. doi: 10.1002/neu.480270207.

Abstract

We investigated the development of spiny neurons in the lateral magnocellular nucleus of the anterior neostriatum before, during, and after song learning in male zebra finches (Taeniopygia guttata). The frequency of dendritic spines, dendritic field size, and branching characteristics were quantified at different ages in Golgi-stained tissue using a three-dimensional computerized tracing system. During development, overall spine frequencies increase between 3 and 5 weeks and decrease thereafter. In particular, spine frequencies of middle segments decrease significantly by 14% between 5 and 7 weeks posthatching (p = 0.017). A further reduction of 48% occurs between 7 weeks and adulthood (p < 0.001), resulting in a spine reduction of 56% on middle segments between 35 days of age and adulthood. In addition to the reduction of spine frequencies, we find regressive events also on some of the neuronal parameters that we have quantified. In general, dendrites of adult animals terminate closer to the cell body than those of 7-, 5-, or 3-week-old birds. Whereas no changes in segment length of first- and second-order dendrites have been identified, third-order dendrites end 19% closer to the cell body in adults than in younger birds (p < 0.024). Second-order dendrites in adult animals branch less frequently than in 3-week-old animals (35%, p = 0.017). There is also a trend of a smaller number of tertiary branches in adulthood compared with 3-week-old birds (41%, p = 0.060). The morphological changes may be related to the function of this nucleus and the sensitive phase for song acquisition.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Birds / physiology*
  • Dendrites / physiology
  • Dendrites / ultrastructure
  • Learning / physiology*
  • Male
  • Neostriatum / cytology
  • Neostriatum / growth & development
  • Neurons / physiology*
  • Vocalization, Animal / physiology*