Fiber-type composition of hindlimb muscles in the turtle, Pseudemys (Trachemys) scripta elegans

J Morphol. 1995 Aug;225(2):193-211. doi: 10.1002/jmor.1052250205.

Abstract

A description is provided of the fiber-type composition of several hindlimb muscles of the adult turtle, Pseudemys (Trachemys) scripta elegans. In addition, cross-section areas of each fiber type and an estimation of the relative (weighted) cross-section area (wCSA) occupied by the different fiber types are also provided. Seven muscles were selected for study, based on their suitability for future neurophysiological analysis as components of the segmental motor system, and on their homologies with muscles in other vertebrates. The test muscles were iliofibularis (ILF), ambiens (AMB), external gastrocnemius (EG), extensor digitorum communis (EDC), flexor digitorum longus (FDL), tibialis anterior (TA), and peroneus anterior (PA). Serial sections of these muscles were stained for myosin adenosine triphosphatase (ATPase), NADH-diaphorase, and alpha-glycerophosphate dehydrogenase (alpha-GPDH), thereby enabling fiber-type classification on the basis of indirect markers for contraction speed and oxidative (aerobic) vs. glycolytic (anaerobic) metabolism. All muscles contained three fiber types: slow oxidative (SO; possibly including some non-twitch tonic fibers); fast oxidative glycolytic (FOG); and fast glycolytic (Fg). There were at least 30% FOG and 50% FOG + Fg fibers in the seven muscles, the extreme distributions being the predominantly glycolytic ILF vs. the predominantly oxidative FDL muscle (ILF--15.5% SO, 35.2% FOG, 49.3% Fg vs. FDL--49.1% SO, 41.1% FOG, 9.8% Fg). As in other species, the test muscles exhibited varying degrees of regional concentration (compartmentalization) of the different fiber types. This feature was most striking in ILF. Pronounced compartmentalization was also observed in AMB, EG, PA, TA, and EDC, whereas the distribution of fiber types in the highly oxidative FDL was homogeneous. In five of the seven muscles, fiber size was ranked with Fg > FOG > SO. In terms of wCSA, which provides a coarse-grain measure of the different fiber types' potential contribution to whole muscle peak force, all muscles exhibited a higher Fg and lower SO contribution to cross-section area than suggested by their corresponding fiber-type composition. The largest relative increase in wCSA vs. fiber-type composition were in the ILF and AMB muscles. We conclude that the turtle hindlimb provides some interesting possibilities for testing for a division of labor among different muscles during different movements (e.g., sustained vs. ballistic), and for study of the behavior of the different fiber (and motor unit) types under normal and perturbed conditions. The relationships between the present results and previous findings on homologous muscles of the mammalian (cat, rat) and reptilian (lizard) hindlimb are discussed.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Hindlimb
  • Muscle Fibers, Skeletal / ultrastructure*
  • Muscle, Skeletal / anatomy & histology*
  • Statistics as Topic
  • Turtles / anatomy & histology*