Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Mar;53(1):251-65.
doi: 10.1016/0306-4522(93)90303-w.

Localization of insulin-like growth factor binding protein-2 messenger RNA during postnatal brain development: correlation with insulin-like growth factors I and II

Affiliations

Localization of insulin-like growth factor binding protein-2 messenger RNA during postnatal brain development: correlation with insulin-like growth factors I and II

W H Lee et al. Neuroscience. 1993 Mar.

Abstract

Insulin-like growth factor binding protein-2 binds insulin-like growth factors I and II with high affinity and modulates the interaction of these ligands with the type I insulin-like growth factor receptor. Previously we have shown that insulin-like growth factor binding protein-2 and insulin-like growth factor-I gene expression are spatiotemporally co-ordinated in the developing retina and cerebellum. The present study examined other brain regions and found a similar correlation in insulin-like growth factor binding protein-2 and insulin-like growth factor-I gene expression in relay stations of developing sensory and cerebellar networks of the rat. In these sites, as in the cerebellum and retina, insulin-like growth factor-I messenger RNA is localized in the principal or projection neurons and insulin-like growth factor binding protein-2 messenger RNA is localized in surrounding astroglia. Outside these sensory relay centers, the relationship of insulin-like growth factor binding protein-2 to insulin-like growth factor-I gene expression is not so well defined. In the hippocampal formation, insulin-like growth factor-I messenger RNA is present in large interneurons and insulin-like growth factor binding protein-2 messenger RNA in regional astrocytes; their timing is co-ordinated, with peak levels seen about postnatal day 12, but their anatomical association is not apparent. The least degree of correlation between local insulin-like growth factor-I and insulin-like growth factor binding protein-2 gene expression is found in the neocortex, where insulin-like growth factor-I is abundant in scattered large neurons from postnatal days 3 to 20. In contrast, insulin-like growth factor binding protein-2 messenger RNA is widely expressed throughout the neocortex from before birth to about postnatal day 12, in a pattern consistent with expression by nascent astroglia. Insulin-like growth factor binding protein-2 gene expression is greatly reduced throughout the brain by the third week after birth; in response to optic nerve transection, however, there is a resurgence of gene expression for this factor by activated astrocytes in affected retinal target regions. Insulin-like growth factor binding protein-2 and insulin-like growth factor-II messenger RNAs are co-localized in the choroid plexus and leptomeninges from the time of birth onward without diminution. In summary, insulin-like growth factor binding protein-2 demonstrates complex patterns of gene expression during postnatal brain development--some of which appear to be closely related to local insulin-like growth factor synthesis and some of which appear independent of it.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources