In the reverse passive Arthus reaction in mouse skin and immune injury of mouse dermal basement membrane, neutrophil (PMN) infiltration in mast cell deficient WBB6F1-W/Wv (W/Wv) mice was only 40% of that in WBB6F1-(+)/+ (+/+) mice that had a normal mast cell repertoire. An anti-tumor necrosis factor-alpha (TNF-alpha) monoclonal antibody (mAb) decreased PMN infiltration by 35-80% in +/+ but not W/Wv mice. In addition, an anti-human interleukin-8 (IL-8) MAb, DM/C7, inhibited PMN infiltration of the skin induced by either intradermal administration of recombinant human IL-1 beta or immune complex deposition. In both models of immune complex injury, DM/C7 reduced PMN infiltration by 40-60% in +/+ mice but not W/Wv mice. PMN infiltration and the sensitivity of this infiltration to anti-TNF-alpha or DM/C7 MAb in W/Wv mice whose mast cell population had been restored was indistinguishable from the influx observed in +/+ mice. These data suggest that TNF-alpha, IL-8, and mast cells play a fundamental role in PMN recruitment following immune complex injury.