Basal promoter elements as a selective determinant of transcriptional activator function
- PMID: 7715708
- DOI: 10.1038/374657a0
Basal promoter elements as a selective determinant of transcriptional activator function
Abstract
In eukaryotes, activation of transcription involves an interplay between activators bound to cis-regulatory elements and factors bound to basal elements near the start site of transcription. The basal elements, for example the TATA box or proximal sequence element (PSE) of small nuclear RNA (snRNA) promoters, nucleate the assembly of basal transcription complexes, components of which interact with activators. Although one basal transcription complex can interact with many activators, it is unclear whether different basal transcription complexes can direct different responses to particular activators. We show here that changing the arrangement of basal elements can alter the response to transcriptional activation domains. Indeed, in the human U6 snRNA promoter, point mutation of either a TATA box or PSE results in diametrically opposed responses to VP16- and Sp1-derived activation domains. These basal elements can even discriminate small changes in an activation domain. Thus the arrangement of basal promoter elements provides a mechanism for differential regulation of transcription.
Similar articles
-
Basal components of the transcription apparatus (RNA polymerase II, TATA-binding protein) contain activation domains: is the repetitive C-terminal domain (CTD) of RNA polymerase II a "portable enhancer domain"?Mol Reprod Dev. 1994 Oct;39(2):215-25. doi: 10.1002/mrd.1080390215. Mol Reprod Dev. 1994. PMID: 7826625
-
Recruitment of TBP or TFIIB to a promoter proximal position leads to stimulation of RNA polymerase II transcription without activator proteins both in vivo and in vitro.Biochem Biophys Res Commun. 1999 Mar 5;256(1):45-51. doi: 10.1006/bbrc.1999.0280. Biochem Biophys Res Commun. 1999. PMID: 10066420
-
DNA constraints on transcription activation in vitro.J Mol Biol. 2000 Mar 24;297(2):321-34. doi: 10.1006/jmbi.2000.3562. J Mol Biol. 2000. PMID: 10715204
-
The interactions of transcription factors and their adaptors, coactivators and accessory proteins.Bioessays. 1991 Oct;13(10):499-503. doi: 10.1002/bies.950131003. Bioessays. 1991. PMID: 1661580 Review.
-
Transcriptional activation: risky business.Genes Dev. 2001 May 1;15(9):1045-50. doi: 10.1101/gad.896501. Genes Dev. 2001. PMID: 11331599 Review.
Cited by
-
Circular RNA: an important player with multiple facets to regulate its parental gene expression.Mol Ther Nucleic Acids. 2020 Nov 17;23:369-376. doi: 10.1016/j.omtn.2020.11.008. eCollection 2021 Mar 5. Mol Ther Nucleic Acids. 2020. PMID: 33425494 Free PMC article. Review.
-
Regulation of expression of human RNA polymerase II-transcribed snRNA genes.Open Biol. 2017 Jun;7(6):170073. doi: 10.1098/rsob.170073. Open Biol. 2017. PMID: 28615474 Free PMC article. Review.
-
A naturally derived small molecule disrupts ligand-dependent and ligand-independent androgen receptor signaling in human prostate cancer cells.Mol Cancer Ther. 2014 Feb;13(2):341-52. doi: 10.1158/1535-7163.MCT-13-0478. Epub 2013 Nov 20. Mol Cancer Ther. 2014. PMID: 24258347 Free PMC article.
-
A novel TBP-TAF complex on RNA polymerase II-transcribed snRNA genes.Transcription. 2012 Mar-Apr;3(2):92-104. doi: 10.4161/trns.19783. Epub 2012 Mar 1. Transcription. 2012. PMID: 22441827 Free PMC article.
-
Mechanisms of estrogen receptor antagonism toward p53 and its implications in breast cancer therapeutic response and stem cell regulation.Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15081-6. doi: 10.1073/pnas.1009575107. Epub 2010 Aug 9. Proc Natl Acad Sci U S A. 2010. PMID: 20696891 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
