An analysis of the response to gut induction in the C. elegans embryo

Development. 1995 Apr;121(4):1227-36. doi: 10.1242/dev.121.4.1227.


Establishment of the gut founder cell (E) in C. elegans involves an interaction between the P2 and the EMS cell at the four cell stage. Here I show that the fate of only one daughter of EMS, the E cell, is affected by this induction. In the absence of the P2-EMS interaction, both E and its sister cell, MS, produce pharyngeal muscle cells and body wall muscle cells, much as MS normally does. By cell manipulations and inhibitor studies, I show first that EMS loses the competence to respond before it divides even once, but P2 presents an inducing signal for at least three cell cycles. Second, induction on one side of the EMS cell usually blocks the other side from responding to a second P2-derived signal. Third, microfilaments and microtubules may be required near the time of the interaction for subsequent gut differentiation. Lastly, cell manipulations in pie-1 mutant embryos, in which the P2 cell is transformed to an EMS-like fate and produces a gut cell lineage, revealed that gut fate is segregated to one of P2's daughters cell-autonomously. The results contrast with previous results from similar experiments on the response to other inductions, and suggest that this induction may generate cell diversity by a different mechanism.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Actin Cytoskeleton / physiology
  • Animals
  • Caenorhabditis elegans / embryology*
  • Caenorhabditis elegans / genetics
  • Embryonic Induction*
  • Fluorescent Antibody Technique
  • Histocytochemistry
  • Intestines / embryology*
  • Microtubules / physiology
  • Mutation