Much research has focused on the effects of environmental variability on foraging decisions. However, the general pattern of preference for variability in delay to reward and aversion to variability in amount of reward remains unexplained a either a mechanistic or a functional level. Starlings' preferences between a fixed and a variable option were studied in two treatments, A and D. The fixed option was the same in both treatments (20-s fixed-interval delay, five units food). In Treatment A the variable option gave two equiprobable amounts of food (20-s delay, three or seven units) and in D it gave two equiprobable delays to food (2.5-s or 60.5-s delays, five units). In both treatments the programmed ratio [amount/(intertrial interval+latency+delay)] in the fixed option equaled the arithmetic mean of the two possible ratios in the variable option (ITI = 40 s, latency = 1 s). The variable option was strongly preferred in Treatment D and was weakly avoided in Treatment A. These results are discussed in the light of two theoretical models, a form of constrained rate maximization and a version of scalar expectancy theory. The latter accommodates more of the data and is based on independently verifiable assumptions, including Weber's law.