During the past five years general rules have been developed for the application of chaos theory to biology and medicine, which enable investigators to avoid the pitfalls that invalidated and trivialized many earlier results. The importance of biological chaos is that the variables governing the spatial and temporal geometries of the system may be few in number, fractional in dimension, and thus enable low-energy control with complex deterministic consequences. The complexity of control inherent in chaotic systems may be important in the dynamics of gene expression and translation. Extending these ideas may lead to completely novel ways to modulate protein production by introducing simple pulses at critical times or places.