The development of parvalbumin-immunoreactivity in the neocortex of the mouse

Brain Res Dev Brain Res. 1994 Sep 16;81(2):247-59. doi: 10.1016/0165-3806(94)90311-5.

Abstract

In the present study the postnatal development of parvalbumin-immunoreactivity was examined in the neocortex of the mouse. Postnatal mice were processed at different developmental stages using a well-characterized monoclonal antibody against parvalbumin, and immunocytochemistry. The first immunoreactive neurons appeared in the first parietal and retrosplenial cortices at postnatal day 10 (P10). From P11 to P12, immunoreactivity emerged in the second parietal, cingular, frontal, hindlimb-forelimb, first temporal, primary and secondary occipital and gustatory cortices, and at P14, parvalbumin-positive cells were present in the remaining regions. In general, parvalbumin-immunoreactivity appeared first in the primary sensory/motor areas, and then in second sensory/motor or associative areas. The maturation of parvalbumin-immunoreactivity, however, was a long-lasting process, which was not completed until adult stages. In all cortical regions, parvalbumin-immunoreactive cells were present first in layer V, from which immunoreactivity expanded to the upper and inner cortical layers at subsequent developmental stages. This pattern of maturation differed from the usual 'inside-out' gradient of neocortical neurogenesis and maturation. At the cellular level, parvalbumin-immunoreactivity appeared first in cell somata, and staining of dendrites and boutons was apparent two days later. From the second postnatal week onwards, an immunoreactive axonal system was observed in the neocortical white matter and the corpus callosum. We conclude that the emergence and maturation of parvalbumin-immunoreactivity in the mouse neocortex shows marked area-specific differences, but proceeds following a similar center-to-outside radial gradient. These features may reflect the acquisition of certain physiological properties by a subset of GABAergic inhibitory neurons.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cerebral Cortex / chemistry*
  • Cerebral Cortex / cytology
  • Cerebral Cortex / growth & development
  • Immunoenzyme Techniques
  • Mice
  • Parvalbumins / analysis*

Substances

  • Parvalbumins