Prolonged responses in rat cerebellar Purkinje cells following activation of the granule cell layer: an intracellular in vitro and in vivo investigation

Exp Brain Res. 1994;100(2):200-14. doi: 10.1007/BF00227191.

Abstract

We obtained intracellular recordings of 84 Purkinje cells in vitro from guinea pig slices and of 35 cells in vivo from ketamine-anesthetized rats in order to assess detailed properties of synaptic responses in Purkinje cells following granule cell activation. In vitro, electrical stimulation of the granule cell layer underlying recorded Purkinje cells was used in sagittal slices to predominantly activate synapses on ascending granule cell axons. In vivo, stimulation of the upper lip was used to activate Purkinje cells overlying the upper lip patch in the granule cell layer of crus IIa. In the presence of a GABAA antagonist, Purkinje cells at resting membrane potential responded to both electrical stimulation in vitro and peripheral stimulation in vivo, with a depolarization of 1-10 mV amplitude that lasted for 100-300 ms in the absence of climbing fiber input. Similar prolonged depolarizations could also be induced by brief depolarizing current pulses delivered through the recording electrode, demonstrating that either synaptic or direct depolarization may activate inward currents leading to a sustained response. In support of this hypothesis we found that prolonged depolarizations were shortened significantly when stimulation in the granule cell layer or intracellular current pulses were delivered during hyperpolarizing current steps. Stimulation in the granule cell layer or intracellular current pulses delivered during periods of spontaneous somatic spiking resulted in prolonged depolarizations in dendritic recordings, which were accompanied by an increase in somatic spiking frequency. Following upper lip stimulation in vivo, this increase in somatic spiking was interrupted by an inhibition of 10-50 ms duration. In a majority of recordings, this inhibition did not completely abolish prolonged depolarizations, however, and a delayed increase in somatic spike frequency was still observed. These results suggest that prolonged increases in Purkinje cell spike frequency following peripheral stimulation are due to an underlying prolonged dendritic depolarization induced by granule cell input. Further, a single, short burst of input via ascending granule cell axons appears to be sufficient to induce these responses.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Axons / drug effects
  • Axons / physiology
  • Bicuculline / pharmacology
  • Brain Mapping
  • Cerebellum / cytology
  • Cerebellum / drug effects
  • Cerebellum / physiology*
  • Dendrites / drug effects
  • Electric Stimulation
  • Electrodes, Implanted
  • GABA-A Receptor Antagonists
  • Guinea Pigs
  • Lip / innervation
  • Membrane Potentials / drug effects
  • Membrane Potentials / physiology
  • Peripheral Nerves / physiology
  • Purkinje Cells / drug effects
  • Purkinje Cells / physiology*
  • Rats

Substances

  • GABA-A Receptor Antagonists
  • Bicuculline