Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Sep;25(9):1067-79.
doi: 10.1002/neu.480250904.

Neural organization of the ventilatory activity in the frog, Rana catesbeiana. I

Affiliations

Neural organization of the ventilatory activity in the frog, Rana catesbeiana. I

N Kogo et al. J Neurobiol. 1994 Sep.

Abstract

In order to elucidate the neural basis for lung ventilation in the frog, we have investigated the efferent neural activity to oropharyngeal muscles in the decerebrate, paralyzed, unanesthetized bullfrog, Rana catesbeiana. Efferent motor output was recorded from the mandibular branch of the trigeminal (Vmd), the laryngeal branch of the vagus (Xl), and the main and sternohyoid branches of the hypoglossal nerve (Hm and Hsh, respectively). Two types of rhythmic bursting outputs were observed: (1) a high-frequency, low-amplitude, reciprocal oscillation between Vmd, a buccal levator nerve, and Hsh, a buccal depressor nerve; and (2) a low-frequency, high-amplitude, synchronous bursting of Vmd, Hm, Hsh, and Xl. The first type is inferred to represent fictive oropharyngeal ventilation. The second type of burst was divided into four intervals: (a) augmenting activity of Hsh; (b) activation of Xl with continued activation of Hsh; (c) activation of Vmd and Hm (a buccal levator nerve), continued activation of Xl, and termination of Hsh activity; and (d) warning activity in Vmd and Hm associated with a prominent second wave in Xl. This coordinated activity is inferred to represent fictive pulmonary ventilation because the neurograms in these four intervals correspond closely to EMGs and neurograms recorded in the intact frog during the four phases of pulmonary ventilation, namely, buccal depression, pulmonary expiration, pulmonary inspiration, and glottal closure. Hypercapnia, vagotomy, and cutaneous pinching enhanced the high-amplitude, low-frequency rhythm, but not the low-amplitude, high-frequency oscillation. Lung inflation generally inhibited the former and not the latter, but in some cases lung inflation stimulated pulmonary ventilation. We conclude that oropharyngeal and pulmonary ventilation of the frog are produced by one or, possibly, two intrinsically active generators.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources