The neural cell adhesion molecule (NCAM) is found on cells as several related polypeptides formed by alternative splicing of the single NCAM gene. The alternatively spliced 30-bp VASE exon in the fourth immunoglobulin-like domain is the structural variation nearest those portions of the polypeptide proposed to mediate cell-cell adhesion. To test the ability of distinct forms of the NCAM molecules to mediate cell adhesion, L cells were transfected with expression vectors encoding rat 140 kD NCAM +/- the VASE exon. L cell lines which expressed these polypeptides were isolated and tested for self-aggregation in a low shear, rapid aggregation assay. Increased cellular aggregation of the transfectants was observed to be a function of the NCAM molecule expressed. These transfected cells showed segregation in a long term co-aggregation assay: cells expressing NCAM--VASE formed aggregates which tended to exclude cells expressing NCAM+VASE and vice versa. These results provide direct evidence that this small difference in NCAM structure is sufficient to allow segregation of cells.