Human microsporidial infections

Clin Microbiol Rev. 1994 Oct;7(4):426-61. doi: 10.1128/CMR.7.4.426.

Abstract

Microsporidia are obligate intracellular spore-forming protozoal parasites belonging to the phylum Microspora. Their host range is extensive, including most invertebrates and all classes of vertebrates. More than 100 microsporidial genera and almost 1,000 species have now been identified. Five genera (Enterocytozoon spp., Encephalitozoon spp., Septata spp., Pleistophora sp., and Nosema spp.) and unclassified microsporidia (referred to by the collective term Microsporidium) have been associated with human disease, which appears to manifest primarily in immunocompromised persons. The clinical manifestations of microsporidiosis are diverse and include intestinal, pulmonary, ocular, muscular, and renal disease. Among persons not infected with human immunodeficiency virus, ten cases of microsporidiosis have been documented. In human immunodeficiency virus-infected patients, on the other hand, over 400 cases of microsporidiosis have been identified, the majority attributed to Enterocytozoon bieneusi, an important cause of chronic diarrhea and wasting. Diagnosis of microsporidiosis currently depends on morphological demonstration of the organisms themselves. Initial detection of microsporidia by light microscopic examination of tissue sections and of more readily obtainable specimens such as stool, duodenal aspirates, urine, sputum, nasal discharge, bronchoalveolar lavage fluid, and conjunctival smears is now becoming routine practice. Definitive species identification is made by using the specific fluorescein-tagged antibody (immunofluorescence) technique or electron microscopy. Treatment options are limited, but symptomatic improvement of Enterocytozoon bieneusi infection may be achieved with the anthelmintic-antiprotozoal drug albendazole. Preliminary observations suggest that Septata intestinalis and Encephalitozoon infections may be cured with albendazole. Progress is being made with respect to in vitro propagation of microsporidia, which is crucial for developing antimicrosporidial drugs. Furthermore, molecular techniques are being developed for diagnostic purposes, taxonomic classification, and analysis of phylogenetic relationships of microsporidia.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Review

MeSH terms

  • Animals
  • HIV Infections / complications
  • Humans
  • Microscopy, Electron
  • Microscopy, Electron, Scanning
  • Microsporida / classification
  • Microsporida / growth & development*
  • Microsporida / ultrastructure*
  • Microsporidiosis / complications*
  • Microsporidiosis / diagnosis
  • Microsporidiosis / pathology*
  • Microsporidiosis / therapy