Possible noradrenergic dysfunction in schizophrenia

Brain Res Bull. 1994;35(5-6):529-43. doi: 10.1016/0361-9230(94)90167-8.

Abstract

In spite of extensive studies over the last 2 decades to find direct evidence in support of the dopamine hypothesis of schizophrenia, no undisputed experimental data has been obtained. In contrast, estimation of noradrenalin (another major catecholamine) and its metabolites in postmortem brain and in the cerebrospinal fluid appears to be producing consistent results. To understand the meaning of this change for the pathogenesis of the illness, we have carried out animal experiments in which reproducibility of schizophrenic signs and symptoms by noradrenergic dysfunction, and treatability of the disorder by modulation of noradrenergic activity were studied. First, psychophysiological signs in skin conductance responsiveness (nonhabituating or nonresponding change) and smooth pursuit eye movement (spiky or stepwise pursuit) could be reproduced by enhancing or suppressing central noradrenergic activity. Behavioral abnormalities resembling schizophrenic symptoms are known to be reproducible by over- or underactivity of the system (overarousal or underarousal syndrome). Secondly, the action of various drugs capable of modulating schizophrenic symptoms was analyzed in relation to noradrenergic activity. Haloperidol, in particular, had a potent suppressing effect on skin conductance activity (spontaneous fluctuation rate and habituation rate) when administered chronically, suggesting its inhibitory action on noradrenergic activity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antipsychotic Agents / pharmacology
  • Antipsychotic Agents / therapeutic use
  • Brain Chemistry / drug effects
  • Brain Chemistry / physiology
  • Humans
  • Norepinephrine / metabolism*
  • Rats
  • Schizophrenia / drug therapy
  • Schizophrenia / metabolism*

Substances

  • Antipsychotic Agents
  • Norepinephrine