Uniglomerular projection neurons participate in early development of olfactory glomeruli in the moth Manduca sexta

J Comp Neurol. 1994 Dec 1;350(1):1-22. doi: 10.1002/cne.903500102.

Abstract

Glomerular organization of the antennal (olfactory) lobe is initiated by the arrival of sensory axons from the antenna. Bundles of axon terminals coalesce into spheroidal knots of neuropil called protoglomeruli. Previous studies have suggested that the protoglomeruli form a template for the mature glomerular array, but an early role for projection neurons in establishing the template has not been excluded. We examined with the confocal laser scanning microscope the morphological development of the uniglomerular projection neurons during the stages in which glomeruli are constructed. Groups of projection neurons were stained with the lipophilic dye DiI to assess the development of the population as a whole; individual neurons were filled intracellularly with Lucifer Yellow to examine in detail the development of shape. In some preparations, sensory axons and glial cells also were labeled by using different fluorescent dyes to reveal possible interactions between projection neuron dendrites and sensory axons or glial cells. Protoglomeruli form in a wave beginning at the entry point of the antennal nerve and proceeding across the lobe to the opposite pole. A second wave follows in which projection neurons become tufted and innervate the newly formed glomeruli, sometimes extending into the glial border surrounding the protoglomeruli. In animals deprived of sensory axons, some projection neurons still form tufted dendritic trees and, in one region of the neuropil, a glomerulus-like structure. The early presence of projection neuron processes in the protoglomeruli and the formation of at least one glomerulus-like structure in unafferented lobes suggest that uniglomerular projection neurons play an active role in the construction of olfactory glomeruli.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cellular Senescence
  • Denervation
  • Female
  • Manduca / growth & development*
  • Microscopy, Confocal
  • Microscopy, Electron
  • Nerve Net / physiology*
  • Neuroglia / physiology
  • Neurons, Afferent / physiology*
  • Olfactory Pathways / growth & development*
  • Olfactory Pathways / physiology*
  • Synaptic Transmission