Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Nov-Dec;23(6):503-18.
doi: 10.1111/j.1532-950x.1994.tb00512.x.

Femoral strain distribution and subsidence after physiological loading of a cementless canine femoral prosthesis: the effects of implant orientation, canal fill, and implant fit

Affiliations

Femoral strain distribution and subsidence after physiological loading of a cementless canine femoral prosthesis: the effects of implant orientation, canal fill, and implant fit

R T Pernell et al. Vet Surg. 1994 Nov-Dec.

Abstract

Twelve normal greyhound femora were divided into three groups. In group one, femoral stems were placed in neutral position with maximal fill. Group two had undersized femoral stems placed in neutral position. Group three had undersized femoral stems placed in varus position. Intact and implanted femora were loaded from 10 newtons (N) to 300 N in axial compression at a rate of 25 N/s for 10 replications. A strain gauge analysis showed that the strain distribution of all implanted femora were substantially different from intact femora, but femora with large implants placed in neutral position had the least amount of deviation from normal. An undersized stem in neutral position had significantly less compressive longitudinal strains along the proximomedial and proximocranial cortices. An undersized stem in varus position improved implant fit along the proximomedial and distolateral cortices, which resulted in increased tensile hoop strains. There were multiple significant correlations between the strain data and implantation variables (implant alignment, canal fill, and implant fit). Subsidence was significantly greater for the undersized implant in neutral position. There was not a difference in subsidence between the large neutral and varus groups. The most important variable that decreased subsidence was increased lateral implant fit (r = -0.86, P = .0003).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources