Are extent and force independent movement parameters? Preparation- and movement-related neuronal activity in the monkey cortex

Exp Brain Res. 1994;99(1):56-74. doi: 10.1007/BF00241412.

Abstract

Movement extent and movement force can be independently controlled in motor performance. Therefore, independent representations of extent and force should exist in the central nervous system (CNS). To test this hypothesis, microelectrode recordings were made in sensorimotor cortex of monkeys trained to perform visually cued wrist flexion movements of two extents, against two levels of frictional resistance. An initial preparatory signal (PS) provided complete, partial or no information about extent and/or force of the movement, which had to be performed in response to a second, response signal (RS). The activity of 511 neurons of the primary motor cortex (MI), the premotor cortex (PM), the postcentral cortex (PC), and the posterior parietal cortex (PA) was recorded in two monkeys. Both reaction time (RT) and neuronal data suggest that there exist independent neuronal mechanisms responsible for the programming of either parameter. On the one hand, partial information about either movement parameter shortened RT when compared with the condition of no prior information. On the other hand, there were, among others, two discrete populations of neurons, one related only to extent, the other only to force. Preparatory changes in activity related to either movement parameter were mainly located in the frontal cortex, especially in the PM. After occurrence of the RS, the percentage of selective changes in activity increased and tended to extend to the parietal cortex. In particular during the movement, force-related changes in activity have been encountered in PA. Furthermore, we conducted trial-by-trial correlation analyses between RT and preparatory neuronal activity for all conditions of prior information. The mean correlation coefficient was significantly higher in the condition of information about movement extent than of information about movement force and it was significantly higher in MI/PM than in PC/PA.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Cerebral Cortex / cytology
  • Cerebral Cortex / physiology*
  • Electromyography
  • Macaca fascicularis
  • Macaca mulatta
  • Male
  • Microelectrodes
  • Motor Cortex / cytology
  • Motor Cortex / physiology
  • Movement / physiology*
  • Muscle, Skeletal / innervation
  • Muscle, Skeletal / physiology
  • Neurons / physiology*
  • Reaction Time / physiology