While the anatomy of the human brain is well defined, the functional connectivity of its structures is far less understood. Modern neuroimaging techniques offer the unique opportunity of visualizing physiologic activation in central nervous structures and of identifying the elements underlying distributed networks for information processing. Following improved spatial resolution of deoxyhemoglobin-sensitive magnetic resonance imaging, we were able to detect simultaneous signal changes in the lateral geniculate nucleus and primary visual cortex during periodic photic stimulation. Visualization of coupled activation by cross-correlation analysis resulted in the first demonstration of thalamocortical interaction in the primary visual pathway of the intact human brain.