Identification of a potentially radiosensitive subgroup among patients with breast cancer

J Natl Cancer Inst. 1994 Nov 2;86(21):1627-34. doi: 10.1093/jnci/86.21.1627.

Abstract

Background: The description of genes and genetic syndromes, such as ataxia-telangiectasia, that predispose some women to breast cancer will provide greater insight into the genetic basis of cancer susceptibility.

Purpose: Our goal was to establish cell lines from patients with breast and bladder cancers, to screen for enhanced levels of radiation-induced arrest in the G2 phase of the cell cycle such as is observed in ataxia-telangiectasia heterozygotes, and to correlate G2 arrest with other prognostic indicators of these cancers and in vivo radiosensitivity.

Methods: Epstein-Barr virus-transformed lymphoblastoid cells were established from 108 female patients with breast cancer and 24 age-matched female control subjects, and from 45 patients with bladder cancer and 18 age-matched control subjects. Cells were exposed to 3 Gy of gamma radiation, and the percentages of cells in G1 and G2 phases were determined at 18 and 24 hours after irradiation by fluorescence-activated cell sorter analysis. Postirradiation delay in G2 phase was determined by calculating the percentage of cells in G2 and by using the ratio G2/G1.

Results: When we determined the percentage of cells in G2 phase at 18 hours after irradiation in 108 lymphoblastoid cells from breast cancer patients, we observed an increase of between 3% and 38% in the number of cells in G2 phase in comparison with cells that were not irradiated. Comparison with previous G2-phase arrest data for ataxia-telangiectasia heterozygotes using a cutoff point at 29% delay demonstrated that 20% and 8% of the breast cancer cell lines of the case patients and control subjects, respectively, fell into that category (P < .001). At the same time after irradiation, it was not possible to distinguish between bladder cancer cell lines (7%) and those of the corresponding control group (6%). Assessment of radiation effects by G2/G1 ratio showed that 18% of the breast cancer patients and 8% of the control subjects were in the high range. When G2 arrest was correlated with other prognostic factors, we found that case patients with a greater G2 block were more likely to have had a family history of breast cancer (P < .006) and more aggressive tumors when assessed by number of involved lymph nodes (P < .002) and tumor size (P < .05). Furthermore, an adverse response to radiotherapy was observed in a group of patients with high G2 arrest.

Implications: While the postirradiation increase in G2-phase arrest in cells from breast cancer patients observed in this study may indicate genetic heterozygosity for ataxia-telangiectasia, it might also reflect other genetic abnormalities important to breast cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Ataxia Telangiectasia / genetics
  • Breast Neoplasms / genetics*
  • Carcinoma, Transitional Cell / genetics
  • Female
  • Flow Cytometry
  • G2 Phase / radiation effects*
  • Gamma Rays
  • Heterozygote
  • Humans
  • Male
  • Middle Aged
  • Prognosis
  • Tumor Cells, Cultured
  • Urinary Bladder Neoplasms / genetics*