Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase

Mol Cell Biol. 1994 Nov;14(11):7265-75. doi: 10.1128/mcb.14.11.7265-7275.1994.

Abstract

The assembly of functional holoenzymes composed of regulatory D-type cyclins and cyclin-dependent kinases (cdks) is rate limiting for progression through the G1 phase of the mammalian somatic cell cycle. Complexes between D-type cyclins and their major catalytic subunit, cdk4, are catalytically inactive until cyclin-bound cdk4 undergoes phosphorylation on a single threonyl residue (Thr-172). This step is catalyzed by a cdk-activating kinase (CAK) functionally analogous to the enzyme which phosphorylates cdc2 and cdk2 at Thr-161/160. Here, we demonstrate that the catalytic subunit of mouse cdc2/cdk2 CAK (a 39-kDa protein designated p39MO15) can assemble with a regulatory protein present in either insect or mammalian cells to generate a CAK activity capable of phosphorylating and enzymatically activating both cdk2 and cdk4 in complexes with their respective cyclin partners. A newly identified 37-kDa cyclin-like protein (cyclin H [R. P. Fisher and D. O. Morgan, Cell 78:713-724, 1994]) can assemble with p39MO15 to activate both cyclin A-cdk2 and cyclin D-cdk4 in vitro, implying that CAK is structurally reminiscent of cyclin-cdk complexes themselves. Antisera produced to the p39MO15 subunit can completely deplete mammalian cell lysates of CAK activity for both cyclin A-cdk2 and cyclin D-cdk4, with recovery of activity in the resulting immune complexes. By using an immune complex CAK assay, CAK activity for cyclin A-cdk2 and cyclin D-cdk4 was detected both in quiescent cells and invariantly throughout the cell cycle. Therefore, although it is essential for the enzymatic activation of cyclin-cdk complexes, CAK appears to be neither rate limiting for the emergence of cells from quiescence nor subject to upstream regulatory control by stimulatory mitogens.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • CDC2-CDC28 Kinases*
  • Cell Cycle
  • Cloning, Molecular
  • Cyclin-Dependent Kinase 2
  • Cyclin-Dependent Kinase 4
  • Cyclin-Dependent Kinase-Activating Kinase
  • Cyclin-Dependent Kinases*
  • DNA Probes / genetics
  • DNA, Complementary / genetics
  • Enzyme Activation
  • Gene Expression
  • Humans
  • Mice
  • Molecular Sequence Data
  • Phosphorylation
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Proto-Oncogene Proteins*
  • Recombinant Fusion Proteins / metabolism
  • Xenopus
  • Xenopus Proteins

Substances

  • DNA Probes
  • DNA, Complementary
  • Proto-Oncogene Proteins
  • Recombinant Fusion Proteins
  • Xenopus Proteins
  • Protein Serine-Threonine Kinases
  • CDC2-CDC28 Kinases
  • CDK2 protein, human
  • CDK4 protein, human
  • Cdk2 protein, Xenopus
  • Cdk2 protein, mouse
  • Cdk4 protein, mouse
  • Cyclin-Dependent Kinase 2
  • Cyclin-Dependent Kinase 4
  • Cyclin-Dependent Kinases
  • Cyclin-Dependent Kinase-Activating Kinase

Associated data

  • GENBANK/U11822