Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoprotein IIb/IIIa complex

Thromb Haemost. 1994 Jul;72(1):1-15.


The glycoprotein (GP) IIb/IIIa, a Ca(2+)-dependent heterodimer, is the major integrin on the platelet plasma membrane. On resting platelets GPIIb/IIIa is maintained in an inactive conformation and serves as a low affinity adhesion receptor for surface-coated fibrinogen, whereas upon platelet activation signals within the cytoplasma alter the receptor function of GPIIb/IIIa (inside-out signalling), which undergoes a measurable conformational change within its exoplasmic domains, and becomes a competent receptor for soluble fibrinogen and some other RGD sequence-containing plasma adhesive proteins. Upon ligand binding, further structural alterations trigger the association of receptor-occupied GPIIb/IIIa complexes with themselves within the plane of the membrane. The simultaneous binding of dimeric fibrinogen molecules to GPIIb/IIIa clusters on adjacent platelets leads to platelet aggregation, which promotes attachment of fibrinogen-GPIIb/IIIa clusters to the cytoskeleton (outside-in signalling). This, in turn, provides the necessary physical link for clot retraction to occur, and generates a cascade of intracellular biochemical reactions which result in the formation of a multiprotein signalling complex at the cytoplasmic domains of GPIIb/IIIa. Glycoprotein IIb/IIIa, also called alpha IIb beta 3 in the integrin nomenclature, plays thus a primary role in both platelet adhesion and thrombus formation at the site of vascular injury. In addition, the human glycoprotein IIb/IIIa complex is the most thoroughly studied integrin receptor, its molecular biology and major features of its primary structure having been elucidated mainly during the last six years. Furthermore, localization of functionally relevant monoclonal antibody epitopes, determination of the cross-linking sites of inhibitory peptide ligands, proteolytic dissection of the isolated integrin, and analysis of natural and artificial GPIIb/IIIa mutants have recently provided a wealth of information regarding structure-function relationships of human GPIIb/IIIa. The aim of this review is to summarize these many structural and functional data in the perspective of an emerging model. Although most of the interpretations based on structural elements of this initial biochemical model require independent confirmation, they may help us to understand the structure-function relationship of this major platelet receptor, and of other members of the integrin superfamily, as well as to perform further investigations in order to test current hypotheses.

Publication types

  • Review

MeSH terms

  • Amino Acid Sequence
  • Humans
  • Integrins / chemistry*
  • Integrins / physiology
  • Ligands
  • Models, Chemical
  • Molecular Sequence Data
  • Platelet Membrane Glycoproteins / chemistry*
  • Platelet Membrane Glycoproteins / physiology
  • Protein Structure, Tertiary
  • Receptors, Cell Surface / chemistry
  • Structure-Activity Relationship


  • Integrins
  • Ligands
  • Platelet Membrane Glycoproteins
  • Receptors, Cell Surface