Chrysotile: its occurrence and properties as variables controlling biological effects

Ann Occup Hyg. 1994 Aug;38(4):427-51, 407. doi: 10.1093/annhyg/38.4.427.

Abstract

Chrysotile formation arises through serpentinization of ultramafics and silicified dolomitic limestones. Rock types tend to control the trace metal content and both the nature and amounts of admixed minerals in the ore, such as fibrous brucite (nemalite) and tremolite. Some associated minerals and trace metals are thought to play a role in biological potential. Tremolite, one of the important associated minerals, may occur with different morphological forms, called habits. These habits range from asbestiform (tremolite asbestos) to common blocky or non-fibrous form (tremolite cleavage fragments). The latter is most common in nature. Tremolite in chrysotile ore varies in habit and concentration, both factors determining the degree of risk following inhalation. Tremolite fibre is thought to be important in relation to the occurrence of mesothelioma. Chrysotile fibrils may vary in diameter. Dust clouds generated following manipulation vary in fibre number and surface area. Chrysotile fibres exhibit a range of physical characteristics. The fibre may be non-flexible ('stiff') and low in tensile strength ('brittle'), and may lack an ability to curl. This fibre, referred to as 'harsh', sheds water more quickly than its curly, flexible 'soft' variety. The behaviour of the harsh fibres is more amphibole-like and their splintery nature suggests an enhanced inhalation potential. Slip fibre ore from Canada tends to contain more fibrous brucite (nemalite) than cross-fibre ore in the same mine. Industrial manipulation, which includes chemical treatment, heating and milling, may impart new surface properties to chrysotile dusts. Biological potential may be enhanced (opening of fibre bundles) or reduced (disruption of surface bonds and lessened ability to interact with organic moieties). Leaching of magnesium from chrysotile occurs at a pH less than about 10. Chrysotile has been demonstrated to lose magnesium in vivo and undergo clearance from the lung. The biological potential of magnesium-depleted chrysotile is much reduced, or even eliminated. Reduction of mesothelioma-inducing and cytotoxic potential has been observed and quantified experimentally. Use of chrysotile products in high-temperature environments may heat the mineral to the point where it undergoes alteration of properties, especially by dehydroxylation. Chrysotile ore may vary in properties and associated minerals: it may form aerosols with different size distributions, especially fibre/fibril diameters and surface areas; it may be associated with varying quantities of tremolite (with differing habits); it may be manipulated both industrially and environmentally to yield surfaces with different properties and, hence, differing biological potentials. Chrysotile's properties may vary from place to place and among different user industries.

Publication types

  • Comparative Study

MeSH terms

  • Asbestos, Amphibole
  • Asbestos, Serpentine* / adverse effects
  • Asbestosis*
  • Humans
  • Lung Neoplasms / etiology
  • Mesothelioma / etiology
  • Pleural Neoplasms / etiology
  • Research
  • Surface Properties
  • Trace Elements

Substances

  • Asbestos, Amphibole
  • Asbestos, Serpentine
  • Trace Elements
  • tremolite