A 13C isotopomer n.m.r. method for monitoring incomplete beta-oxidation of fatty acids in intact tissue

Biochem J. 1994 Nov 1;303 ( Pt 3)(Pt 3):847-53. doi: 10.1042/bj3030847.


An n.m.r. method is presented for monitoring the extent to which fatty acids undergo beta-oxidation without release of shorter-chain intermediates. It is based upon a 13C isotopomer analysis of glutamate from tissue presented with a mixture of [2,4,6,8-13C]octanoate and [1,2,3,4-13C]octanoate. The method does not require steady-state metabolic or isotopic conditions, so it may be applied during a variety of metabolic circumstances, including perfused tissue under stress and in vivo. We have tested the method in perfused rat hearts during anoxia, a model where previous work has shown that beta-oxidation of palmitate is incomplete and shorter-chain intermediates are released [Rabinowitz and Hercker (1974) Arch. Biochem. Biophys. 161, 621-627]. Indeed, n.m.r. spectra of freeze-clamped, acid-extracted tissue show that octanoate undergoes complete beta-oxidation in control normoxic rat hearts, but not in anoxic hearts. Complete beta-oxidation of octanoate was observed under a number of other metabolic conditions in perfused rat hearts, including low-pressure-induced ischaemia, KCl arrest and in the presence of high concentrations of competing substrates. We also demonstrate that the technique is applicable in intact tissue by taking direct measurements in perfused rat hearts using a recently published [13C]homonuclear decoupling technique and in in vivo heart and liver removed from rats after an intravenous infusion of a mixture of [2,4,6,8-13C]octanoate and [1,2,3,4-13C]octanoate.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Caprylates
  • Carbon Isotopes
  • Fatty Acids / metabolism*
  • Liver / metabolism
  • Magnetic Resonance Spectroscopy / methods*
  • Male
  • Myocardium / metabolism
  • Oxidation-Reduction
  • Perfusion
  • Rats
  • Rats, Sprague-Dawley


  • Caprylates
  • Carbon Isotopes
  • Fatty Acids
  • octanoic acid