Genetic aberrations in human brain tumors

Neurosurgery. 1994 Apr;34(4):708-22. doi: 10.1227/00006123-199404000-00021.


Over the last decade, much has been learned about the genetic changes that occur in human neoplasia and how they contribute to the neoplastic state. Oncogenes and tumor suppressor genes have been identified, and many powerful molecular genetic techniques have emerged. Brain tumors have been intensively studied as part of this process. Specific and recurring genetic alterations have been identified and are associated with specific tumor types. In astrocytomas, for example, losses of genetic material on chromosomes 10 and 17 and amplification of the epidermal growth factor receptor gene seem important in pathogenesis, with the loss of chromosome 10 and the amplification of epidermal growth factor receptor being strongly associated with glioblastoma multiforme. Meningiomas, on the other hand, have usually lost part or all of chromosome 22. Brain tumors also express growth factors and growth factor receptors that may be important in promoting tumor growth and angiogenesis. These include epidermal growth factor, transforming growth factor-alpha, platelet-derived growth factor, the fibroblast growth factors, and vascular endothelial growth factor. In this article, we review the genetic aberrations that occur in the major types of brain tumors, including glial tumors, meningiomas, acoustic neuromas, medulloblastomas, primitive neuroectodermal tumors, and pituitary tumors. Wherever possible, clinical correlations have been made concerning the prognostic and therapeutic implications of specific aberrations. We also provide some background about the cytogenetic and molecular genetic techniques that have contributed to the description and understanding of these alterations and speculate as to some clinical and basic science issues that might be explored in the future.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Brain / pathology
  • Brain Neoplasms / genetics*
  • Brain Neoplasms / pathology
  • Cell Transformation, Neoplastic / genetics
  • Cell Transformation, Neoplastic / pathology
  • Chromosome Aberrations*
  • Humans
  • Prognosis