Optimisation of sprinting performance in running, cycling and speed skating

Sports Med. 1994 Apr;17(4):259-75. doi: 10.2165/00007256-199417040-00006.


Sprinting performances rely strongly on a fast acceleration at the start of a sprint and on the capacity to maintain a high velocity in the phase following the start. Simulations based on a model developed in which the generation of metabolic power is related to the mechanical destinations of power showed that for short-lasting sprinting events, the best pacing strategy is an all out effort, even if this strategy causes a strong reduction of the velocity at the end of the race. Even pacing strategies should only be used in exercises lasting longer than 80 to 100 seconds. Sprint runners, speed skaters and cyclists need a large rate of breakdown of energy rich phosphates in the first 4 to 5 seconds of the race (mechanical equivalent > 20 W/kg) in order to accelerate their body, and a power output of more than 10 W/kg in the phase following the start to maintain a high velocity. Maximal speed in running is mainly limited by the necessity to rotate the legs forwards and backwards relative to the hip joint. The acceleration phase, however, relies on powerful extensions of all leg joints. Through a comparison of the hindlimb design of highly specialised animal sprinters (as can be found among predators) and of long distance animal runners (as found among hoofed animals), it is illustrated that these 2 phases of a sprint rely on conflicting requirements: improvement of maximal speed would require lower moments of inertia of the legs whereas a faster acceleration would require the involvement of more muscle mass (not only of the hip and knee extensors but also of the plantar flexors). Maximal speed in cycling and speed skating is not limited by the necessity to move leg segments but rather on air friction and rolling or ice friction. Since the drag coefficients found for speed skaters and cyclists (about 0.8) are considerably higher than those of more streamlined bodies, much progress can still be expected from the reduction of air friction. Speed skaters and especially cyclists show much smaller accelerations during the start than do sprint runners. Skaters might try to improve their very first push off by developing a start technique that allows a much more horizontally directed propulsive force. The small propulsive force at the onset of a cycling sprint is due to the gearing system.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Review

MeSH terms

  • Acceleration
  • Bicycling / physiology*
  • Biomechanical Phenomena
  • Efficiency / physiology*
  • Energy Metabolism
  • Friction
  • Humans
  • Locomotion / physiology
  • Physical Endurance / physiology
  • Running / physiology*
  • Skating / physiology*