Structure of chymopapain M the late-eluted chymopapain deduced by comparative modelling techniques and active-centre characteristics determined by pH-dependent kinetics of catalysis and reactions with time-dependent inhibitors: the Cys-25/His-159 ion-pair is insufficient for catalytic competence in both chymopapain M and papain

Biochem J. 1994 Jun 15;300 ( Pt 3)(Pt 3):805-20. doi: 10.1042/bj3000805.

Abstract

Chymopapain M, the monothiol cysteine proteinase component of the chymopapain band eluted after chymopapains A and B in cation-exchange chromatography, was isolated from the dried latex of Carica papaya and characterized by kinetic and chromatographic analysis. This late-eluted chymopapain is probably a component of the cysteine proteinase fraction of papaya latex discovered by Schack [(1967) Compt. Rend. Trav. Lab. Carlsberg 36, 67-83], named papaya peptidase B by Lynn [(1979) Biochim. Biophys. Acta 569, 193-201] and partially characterized by Polgár [(1981) Biochim. Biophys. Acta 658, 262-269] and is the enzyme with unusual specificity characteristics (papaya proteinase IV) that Buttle, Kembhavi, Sharp, Shute, Rich and Barrett [Biochem. J. (1989) 261, 469-476] claimed to be a previously undetected cysteine proteinase eluted from a cation-exchange column near to the early-eluted chymopapains. A study of the time-dependent chromatographic consequences of thiol-dependent proteolysis of the components of papaya latex is reported. Chymopapain M was isolated by (i) affinity chromatography followed by separation from papain using cation-exchange f.p.l.c. on a Mono S HR5/5 column and (ii) cation-exchange chromatography followed by an unusual variant of covalent chromatography by thiol-disulphide interchange. The existence in chymopapain M of a nucleophilic interactive Cys/His catalytic-site system analogous to those in papain (EC 3.4.22.2) and other cysteine proteinases was deduced from the characteristics shape of the pH-second-order rate constant (k) profiles for its reactions with 2,2'-dipyridyl disulphide and ethyl 2-pyridyl disulphide. Analysis of the pH-k data for the reactions of chymopapain M with the 2-pyridyl disulphides and with 4,4'-dipyridyl disulphide permits the assignment of molecular pKa values of 3.4 and 8.7 to the formation and subsequent dehydronation of the Cys-S-/His-Im+H state of the catalytic site and reveals three other kinetically influential ionizations with pKa values 3.4, 4.3 and 5.6. The pH-dependences of kcat./Km for the hydrolysis of N-acetyl-L-Phe-Gly-4-nitroanilide at 25.0 degrees C and I0.1 M catalysed by chymopapain M and papain were determined. For both enzymes, little catalytic activity (5-7% of the maximal) develops consequent on formation of the catalytic site Cys-S-/His-Im+H ion-pair state (across pKa 3.4 for both enzymes). For papain, full expression of Kcat./Km for the uncharged substrate requires only the additional hydronic dissociation with pKa 4.2. By contrast, full expression of kcat./Km for chymopapain M requires additional hydronic dissociation with pKa values of 4.3 and 5.6.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • Catalysis
  • Chymopapain / antagonists & inhibitors
  • Chymopapain / chemistry*
  • Cystatins / pharmacology
  • Cysteine / chemistry
  • Disulfides / chemistry
  • Histidine / chemistry
  • Hydrogen Bonding
  • Hydrogen-Ion Concentration
  • Kinetics
  • Models, Molecular
  • Molecular Sequence Data
  • Oxidation-Reduction
  • Papain / chemistry*
  • Protein Structure, Tertiary
  • Sequence Alignment
  • Sequence Homology, Amino Acid

Substances

  • Cystatins
  • Disulfides
  • Histidine
  • Papain
  • Chymopapain
  • Cysteine