Chronic cardiac rejection: identification of five upregulated genes in transplanted hearts by differential mRNA display

Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6463-7. doi: 10.1073/pnas.91.14.6463.

Abstract

Transplant arteriosclerosis, the major manifestation of chronic rejection, develops after allogeneic (Lewis to F344) but not syngeneic (Lewis to Lewis) rat cardiac transplantation. To identify transcriptionally regulated mediators associated with chronic cardiac rejection, we adapted the differential mRNA display technique for in vivo transplant specimens. Gene transcript patterns in four allogeneic hearts showing early signs of chronic rejection were compared with those in two syngeneic hearts exposed to the same surgical procedure but histologically normal. Twelve differentially expressed cDNA bands were identified. We improved the probability of isolating one or more allograft-specific cDNAs from a single display band by first using recovered and reamplified PCR products as probes in RNA blot analysis. cDNA fragments cloned from individual bands were then used in a second RNA blot analysis, which allowed for the correlation of specific mRNA transcripts with cDNA clones. Five cDNA clones produced time-dependent, allograft-specific hybridization. Sequence analysis demonstrated that two of these cDNAs corresponded to unknown genes, whereas the other three represented known genes not previously associated with chronic rejection. The latter group included the macrophage lectin specific for galactose/N-acetylgalactosamine (a cell-surface receptor), the nuclear P1 gene (a homologue of a yeast replication protein), and a ubiquitin-like gene. Our application of the differential display technique allowed the direct identification of potential mediators under in vivo conditions that preserve the environment of the disease process--including infiltrating cell populations critical to the inflammatory response.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Cloning, Molecular
  • DNA Primers
  • DNA, Complementary / analysis
  • Gene Expression Regulation*
  • Graft Rejection / genetics*
  • Heart Transplantation / immunology
  • Heart Transplantation / physiology*
  • Inflammation
  • Lectins / biosynthesis
  • Molecular Sequence Data
  • Myocardium / metabolism*
  • Nuclear Proteins / biosynthesis
  • Polymerase Chain Reaction
  • RNA, Messenger / analysis
  • RNA, Messenger / biosynthesis*
  • Rats
  • Rats, Inbred F344
  • Rats, Inbred Lew
  • Sequence Homology, Nucleic Acid
  • Transcription, Genetic
  • Transplantation, Heterotopic
  • Transplantation, Homologous / immunology
  • Transplantation, Homologous / physiology
  • Transplantation, Isogeneic / immunology
  • Transplantation, Isogeneic / physiology
  • Ubiquitins / biosynthesis

Substances

  • DNA Primers
  • DNA, Complementary
  • Lectins
  • Nuclear Proteins
  • RNA, Messenger
  • Ubiquitins