Representation of interaural level difference in the VLVp, the first site of binaural comparison in the barn owl's auditory system

Hear Res. 1994 Apr;74(1-2):148-64. doi: 10.1016/0378-5955(94)90183-x.

Abstract

In the avian auditory system, the posterior division of the ventral nucleus of the lateral lemniscus (VLVp) is the first site where the levels of sound arriving at the two ears are compared. VLVp units are excited by sound at the contralateral ear and are inhibited by sound at the ipsilateral ear, and, as a result, are sensitive to interaural level differences (ILD). In this study, we investigate the functional properties of VLVp units and describe the topography of ILD sensitivity along the dorsoventral dimension of this nucleus. The responses of VLVp units were tested with monaural and binaural noise delivered through earphones. Excitatory and inhibitory responsiveness was quantified using several measures that assessed the effect of contra-ear stimulation and the effect of ipsi-ear stimulation on the contra-ear response. On the basis of these measures, we characterize the map of ILD sensitivity in the VLVp. The temporal pattern of unit responses were also analyzed. The discharges of VLVp units were regular and time-locked to the onset of a stimulus, a pattern of discharge reminiscent of the 'chopper pattern' observed in the lateral superior olive (LSO) of mammals. The temporal discharge patterns of a single VLVp neuron often distinguished between equivalent ILDs, resulting from different combinations of contra- and ipsi-ear levels, that were not distinguished by spike count alone. However, the temporal response pattern did not distinguish between all such combinations of contra- and ipsi-ear levels. The additional information was encoded by the pattern of activity across the entire population of VLVp neurons. This study describes similarities in the functional properties of VLVp and LSO units that suggest similar physiological mechanisms in avians and mammals for encoding similar acoustic information.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustic Stimulation
  • Action Potentials / physiology
  • Animals
  • Auditory Cortex / physiology
  • Auditory Pathways / physiology
  • Auditory Threshold / physiology
  • Birds / physiology*
  • Brain Stem / physiology
  • Dichotic Listening Tests
  • Electrophysiology
  • Evoked Potentials, Auditory / physiology
  • Mammals / physiology
  • Sound Localization / physiology*
  • Species Specificity