Long-term unilateral loading and bone mineral density and content in female squash players

Calcif Tissue Int. 1994 Apr;54(4):249-55. doi: 10.1007/BF00295946.


We examined 19 female Finnish national level squash players and 19 healthy female controls with a dual energy x-ray absorptiometric (DXA) scanner for the determination of the association between long-term unilateral activity and bone mineral density (BMD) and content (BMC) of the upper extremities. In players, the BMDs and the BMCs were significantly higher in each bone site of the playing extremity. The side-to-side difference was largest in the proximal humerus (BMD 15.6%, BMC 17.8%) and smallest in the ulnar shaft (BMD 5.6%, BMC 7.3%). In sex-, age-, weight-, and height-matched controls, the side-to-side differences were significantly smaller, ranging from 1.6% to 4.1%. The number of training years and elbow flexion strength correlated positively with the relative BMD and BMC in the humerus of the playing arm (r = 0.632-0.685). The starting age of training in turn correlated negatively (r = -0.483 to -0.577) with these bone parameters. Significantly larger side-to-side differences (average 22%) were found in players who had started their career before or during menarche than in those who had begun the training 1 year or more after the menarche (9%). These findings suggest that the bones of the playing extremity clearly benefit from active squash playing. The benefit is largest in humerus and smaller in the bone of the forearm. The benefit of playing is stronger if the athlete has started the training at or before menarche than after it.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorptiometry, Photon
  • Adolescent
  • Adult
  • Analysis of Variance
  • Arm / physiology*
  • Biomechanical Phenomena
  • Body Height / physiology
  • Body Weight / physiology
  • Bone Density / physiology*
  • Child
  • Exercise / physiology*
  • Female
  • Finland
  • Humans
  • Longitudinal Studies
  • Racquet Sports / physiology*