How swimming fish use slow and fast muscle fibers: implications for models of vertebrate muscle recruitment

J Comp Physiol A. 1994 Jul;175(1):123-31. doi: 10.1007/BF00217443.


We quantified the intensity and duration of electromyograms (emgs) from the red and white axial muscles in five bluegill sunfish (Lepomis macrochirus) which performed three categories of behavior including steady swimming and burst and glide swimming at moderate and rapid speeds. Steady swimming (at 2 lengths/s) involved exclusively red muscle activity (mean posterior emg duration = 95 ms), whereas unsteady swimming utilized red and white fibers with two features of fiber type recruitment previously undescribed for any ectothermic vertebrate locomotor muscle. First, for moderate speed swimming, the timing of red and white activity differed significantly with the average onset time of white lagging behind that of red by approximately 40 ms. The durations of these white emgs were shorter than those of the red emgs (posterior mean = 82 ms) because offset times were effectively synchronous. Second, compared to steady and moderate speed unsteady swimming, the intensity of red activity during rapid unsteady swimming decreased while the intensity of white muscle activity (mean white emg duration = 33 ms) increased. Decreased red activity associated with increased white activity differs from the general pattern of vertebrate muscle recruitment in which faster fiber types are recruited in addition to, but not to the exclusion of, slower fiber types.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Electromyography
  • Fishes
  • Locomotion
  • Muscles / physiology*
  • Physical Exertion