Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Feb 18;269(7):4953-8.

In vitro UV mutagenesis associated with nucleotide excision-repair gaps in Escherichia coli

Affiliations
  • PMID: 8106470
Free article

In vitro UV mutagenesis associated with nucleotide excision-repair gaps in Escherichia coli

O Cohen-Fix et al. J Biol Chem. .
Free article

Abstract

Using a cell-free system for UV mutagenesis we have recently shown that extracts prepared from Escherichia coli cells promote a UV mutagenesis pathway that depends on the uvrABC repair genes independent of DNA replication (type II UV mutagenesis; Cohen-Fix, O., and Livneh, Z. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 3300-3304). Type II UV mutagenesis was defective also in extracts prepared from a uvrD strain. These deficiencies were complemented by adding purified UvrA, UvrB, UvrC, or UvrD proteins to the respective cell extracts. The Uvr proteins act at an early stage in the process, probably preparing a premutagenic single-stranded DNA gap, which subsequently serves as a substrate for the mutagenic reaction. Type II UV mutagenesis was not dependent on DNA polymerases I or on DNA polymerase II, but it was dependent on DNA polymerase III. Thus, similar to the in vivo situation, only DNA polymerase III is essential for UV mutagenesis. Antibodies against the beta subunit of DNA polymerase III holoenzyme inhibited DNA replication but not UV mutagenesis. Thus, the processivity subunit of the holoenzyme is not required for type II UV mutagenesis, in agreement with a mechanism involving filling-in of short single-stranded DNA gaps.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources