Bacterial membranes from Klebsiella pneumoniae were investigated for the presence of a nicotinamide nucleotide transhydrogenase activity. Inverted membrane vesicles derived from these cells catalyzed a reduction of NAD+ or 3-acetylpyridine-NAD+ by NADPH, which showed a maximal activity of about 260 nmoles/minute per milligram protein at pH 7-8. In the presence of a protonic uncoupler the specific activity was stimulated about two-fold in this pH range. The presence of detergents did not further increase the specific activity of enzyme. The Klebsiella pneumoniae transhydrogenase activity was sensitive to phenylarsine oxide and palmityl-Coenzyme A, both of which are agents known to inhibit the mammalian enzyme. The Ki-value for palmityl-Coenzyme A with respect to NADPH was about 1.25 microM. Antibodies raised against beef heart transhydrogenase crossreacted with a 54 kD protein in the Klebsiella pneumonia membrane.