Length and width tuning of neurons in the cat's primary visual cortex

J Neurophysiol. 1994 Jan;71(1):347-74. doi: 10.1152/jn.1994.71.1.347.


1. The classically defined receptive field of a visual neuron is the area of visual space over which the cell responds to visual stimuli. It is well established, however, that the discharge produced by an optimal stimulus can be modulated by the presence of additional stimuli that by themselves do not produce any response. This study examines inhibitory influences that originate from areas located outside of the classical (i.e., excitatory) receptive field. Previous work has shown that for some cells the response to a properly oriented bar of light becomes attenuated when the bar extends beyond the receptive field, a phenomenon known as end-inhibition (or length tuning). Analogously, it has been shown that increasing the number of cycles of a drifting grating stimulus may also inhibit the firing of some cells, an effect known as side-inhibition (or width tuning). Very little information is available, however, about the relationship between end- and side-inhibition. We have examined the spatial organization and tuning characteristics of these inhibitory effects by recording extracellularly from single neurons in the cat's striate cortex (Area 17). 2. For each cortical neuron, length and width tuning curves were obtained with the use of rectangular patches of drifting sinusoidal gratings that have variable length and width. Results from 82 cells show that the strengths of end- and side-inhibition tend to be correlated. Most cells that exhibit clear end-inhibition also show a similar degree of side-inhibition. For these cells, the excitatory receptive field is surrounded on all sides by inhibitory zones. Some cells exhibit only end- or side-inhibition, but not both. Data for 28 binocular cells show that length and width tuning curves for the dominant and nondominant eyes tend to be closely matched. 3. We also measured tuning characteristics of end- and side-inhibition. To obtain these data, the excitatory receptive field was stimulated with a grating patch having optimal orientation, spatial frequency, and size, whereas the end- or side-inhibitory regions were stimulated with patches of gratings that had a variable parameter (such as orientation). Results show that end- and side-inhibition tend to be strongest at the orientation and spatial frequency that yield maximal excitation. However, orientation and spatial frequency tuning curves for inhibition are considerably broader than those for excitation, suggesting that inhibition is mediated by a pool of neurons.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials / physiology
  • Animals
  • Cats
  • Functional Laterality / physiology
  • Neurons / physiology*
  • Orientation / physiology*
  • Photic Stimulation
  • Vision, Binocular / physiology
  • Visual Cortex / cytology
  • Visual Cortex / physiology*
  • Visual Fields / physiology
  • Visual Pathways / physiology