Sensitization of the gill and siphon withdrawal reflex of Aplysia: multiple sites of change in the neuronal network

J Neurophysiol. 1993 Sep;70(3):1210-20. doi: 10.1152/jn.1993.70.3.1210.


1. Recent studies have emphasized the major contribution of interneuronal transmission to the mediation and learning-associated modulation of the gill and siphon withdrawal (GSW) reflex of Aplysia. We wish to provide more direct support for the hypothesis that inhibitory junctions are crucial sites of plasticity. 2. In parallel experiments we investigated modulation at five major sites of synaptic transmission in the GSW network: 1) from sensory neurons to motor neurons, 2) from sensory neurons to excitatory interneurons (INTs+) 3) from INTs+ to motor neurons (MNs), 4) from inhibitory interneurons (INTs-) to INTs+, and 5) from INTs+ to INTs-. 3. While recording simultaneously from a single sensory neuron of the LE cluster, an INT+, and a MN, we found that both LE-MN and LE-INTs+ synapses were facilitated by the activation of modulator neurons by stimulation of the left pleuroabdominal connective (185 and 93%, respectively) as well as by serotonin (5-HT) (191 and 84%). Junctions of the second type were therefore less facilitated. The difference in the magnitude of facilitation at these two sites is an indication of a branch-specific, differential efficacy in the modulation of different central synapses made by a single neuron. 4. Although INT(+)-MN junctions have the capacity to display marked posttetanic potentiation, they are not significantly potentiated after connective stimulation. Sensitization of the GSW reflex is therefore not necessarily accompanied by a modification of transmission at these synapses. 5. Inhibitory transmission to INTs+ is significantly reduced by connective stimulation (36%) and by 5-HT (71%). This supports the hypothesis that a reduction of feedback inhibition into INTs+ is a major mechanism of reflex sensitization and may account for the increased evoked firing of INTs+ that is observed after connective stimulation. 6. The excitatory input to INTs- is selectively decreased by 5-HT (50%) and by the molluscan neuropeptide small cardioactive peptide B (38%). This latter effect, which could produce disinhibition of INTs+, may explain the previous observation that this peptide is able to potentiate the evoked input to MNs of the reflex at a concentration (1 microM) that fails to modify monosynaptic sensory-motor transmission. 7. These results indicate that transmission through a small neuronal network that mediates a withdrawal reflex in Aplysia may be modulated at multiple sites and by different mechanisms. These mechanisms include: 1) branch-specific facilitation of sensory neuron outputs and 2) inhibition of INT(-)-INT+ inhibitory postsynaptic potentials by endogenous modulatory neurons and by 5-HT.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Afferent Pathways / physiology
  • Animals
  • Aplysia / physiology*
  • Arousal / physiology*
  • Central Nervous System / physiology
  • Evoked Potentials / physiology
  • Gills / innervation*
  • Interneurons / physiology
  • Muscle Contraction / physiology
  • Nerve Net / physiology*
  • Neural Inhibition / physiology
  • Neuronal Plasticity / physiology
  • Neurons / physiology
  • Reflex / physiology*
  • Reflex, Monosynaptic / physiology
  • Synaptic Transmission / physiology*