Zinc and selenium, site-specific versus general antioxidation

Can J Physiol Pharmacol. 1993 Sep;71(9):721-4. doi: 10.1139/y93-108.

Abstract

The essential nutrients zinc (Zn) and selenium (Se) provide an antioxidant function to animal cells by very different mechanisms. Se is an integral part of Se-dependent glutathione peroxidases, a group of water-soluble enzymes that catalyze the destruction of water-soluble and, in some cases, membrane-bound hydroperoxides. In dietary Se deficiency, Se-dependent glutathione peroxidase activities are decreased; at Se intakes above that which is required for optimal growth, there is a slight to moderate increase in Se-dependent glutathione peroxidase activities. Because of the enzymatic nature of the major role of Se as an antioxidant, Se can be categorized as having a general antioxidant function, controlling peroxide levels in cells by degrading hydroperoxides. On the other hand, Zn functions as an antioxidant only at specific sites, and is not a required cofactor for an antioxidant enzyme. Although Zn plays a structural role in the enzyme Cu, Zn superoxide dismutase, the activity of this enzyme is not decreased in Zn deficiency and its activity is usually depressed at high Zn intakes. Zn may function as a site-specific antioxidant by two mechanisms. Firstly, it competes with Fe and Cu for binding to cell membranes and some proteins, displacing these redox-active metals and making them more available for binding to ferritin and metallothionein, respectively. Secondly, Zn binds the sulfhydryl groups in proteins, protecting them from oxidation. Zn status does not directly control tissue peroxide levels but can protect specific molecules against oxidative and peroxidative damage.

Publication types

  • Review

MeSH terms

  • Animals
  • Antioxidants / metabolism*
  • Diet
  • Humans
  • Selenium / metabolism*
  • Zinc / metabolism*

Substances

  • Antioxidants
  • Selenium
  • Zinc