Faster sequential genetic linkage computations

Am J Hum Genet. 1993 Jul;53(1):252-63.


Linkage analysis using maximum-likelihood estimation is a powerful tool for locating genes. As available data sets have grown, the computation required for analysis has grown exponentially and become a significant impediment. Others have previously shown that parallel computation is applicable to linkage analysis and can yield order-of-magnitude improvements in speed. In this paper, we demonstrate that algorithmic modifications can also yield order-of-magnitude improvements, and sometimes much more. Using the software package LINKAGE, we describe a variety of algorithmic improvements that we have implemented, demonstrating both how these techniques are applied and their power. Experiments show that these improvements speed up the programs by an order of magnitude, on problems of moderate and large size. All improvements were made only in the combinatorial part of the code, without restoring to parallel computers. These improvements synthesize biological principles with computer science techniques, to effectively restructure the time-consuming computations in genetic linkage analysis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Female
  • Genetic Linkage*
  • Humans
  • Male
  • Pedigree
  • Software*