Responses and receptive-field organization of cones in perch retinas

J Neurophysiol. 1977 Jan;40(1):53-62. doi: 10.1152/jn.1977.40.1.53.

Abstract

1. Cones in the retinas of two closely related species of perch, the walleye and sauger (S, vitreum vitreum and S. canadense), are remarkably large. This paper reports a first series of intracellular recordings obtained from 77 of these cones. 2. A small spot of light evokes a sustained hyperpolarizing response from perch cones which may exceed 10 mV in amplitude, is graded with stimulus intensity, and is markedly reduced when the spot is decentered. Most cones seem to be orange sensitive with peak sensitivity at about 600 nm. 3. Enlarging the stimulus diameter from 0.04 to 0.25 mm produces a modest increase in the hyperpolarizing response. However, larger stimuli which illuminate surrounding regions of the retina often evoke a delayed depolarizing potential which antagonizes the sustained phase of the cone's hyperpolarizing response to central illumination. 4. The outer diameter of the region of the antagonistic surround is at least 2.2 mm in extent. An annulus evokes a depolarizing response only if the central region of the receptive field is simultaneously activated. 5. The present results provide the first direct evidence that the receptive fields of cones in fish retinas have an antagonistic center-surround organization. Luminosity-type horizontal cells probably serve as the interneurons which mediate the depolarizing influence of the surround.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Evoked Potentials
  • Fishes / physiology*
  • Light
  • Photoreceptor Cells / physiology*