The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks
- PMID: 8340808
- PMCID: PMC6576531
- DOI: 10.1523/JNEUROSCI.13-08-03284.1993
The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks
Abstract
As most afferent axons to the thalamus originate in the cerebral cortex, we assumed that the slow (< 1 Hz) cortical oscillation described in the two companion articles is reflected in reticular (RE) thalamic and thalamocortical cells. We hypothesized that the cortically generated slow rhythm would appear in the thalamus in conjunction with delta and spindle oscillations arising from intrinsic and network properties of thalamic neurons. Intracellular recordings have been obtained in anesthetized cats from RE (n = 51) and cortically projecting (n = 240) thalamic neurons. RE cells were physiologically identified by cortically evoked high-frequency spike bursts and depolarizing spindle oscillations. Thalamocortical cells were recognized by backfiring from appropriate neocortical areas, spindle-related cyclic IPSPs, and hyperpolarization-activated delta oscillation consisting of rhythmic low-threshold spikes (LTSs) alternating with afterhyperpolarizing potentials (AHPs). The slow rhythm (0.3-0.5 Hz) was recorded in 65% of RE neurons. In approximately 90% of oscillating cells, the rhythm consisted of prolonged depolarizations giving rise to trains of single action potentials. DC hyperpolarization increased the synaptic noise and, in a few cells, suppressed the long-lasting depolarizing phase of the slow rhythm, without blocking the fast EPSPs. In approximately 10% of oscillating neurons, the hyperpolarizing phase of the oscillation was much more pronounced, thus suggesting that the slow rhythm was produced by inhibitory sculpturing of the background firing. The slow oscillation was associated with faster rhythms (4-8 Hz) in the same RE neuron. The slow rhythm of RE neurons was closely related to EEG wave complexes recurring with the same frequency, and its strong dependency upon a synchronized state of cortical EEG was observed during shifts in EEG patterns at different levels of anesthesia. In 44% of thalamocortical cells the slow rhythm of depolarizing sequences was apparent and it could coexist with delta or spindle oscillations in the same neuron. The occurrence of the slowly recurring depolarizing envelopes was delayed by the hyperpolarizing spindle sequences or by the LTS-AHP sequences of delta oscillation. The hyperpolarization-activated delta potentials that tended to dampen after a few cycles were grouped in sequences recurring with the slow rhythm. We finally propose a unified scenario of the genesis of the three major sleep rhythms: slow, delta, and spindle oscillations.
Similar articles
-
Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression.J Neurosci. 1991 Oct;11(10):3200-17. doi: 10.1523/JNEUROSCI.11-10-03200.1991. J Neurosci. 1991. PMID: 1941080 Free PMC article.
-
Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram.J Neurosci. 1993 Aug;13(8):3266-83. doi: 10.1523/JNEUROSCI.13-08-03266.1993. J Neurosci. 1993. PMID: 8340807 Free PMC article.
-
Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm.J Physiol. 1996 Jan 1;490 ( Pt 1)(Pt 1):159-79. doi: 10.1113/jphysiol.1996.sp021133. J Physiol. 1996. PMID: 8745285 Free PMC article.
-
Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance.Cereb Cortex. 1997 Sep;7(6):583-604. doi: 10.1093/cercor/7.6.583. Cereb Cortex. 1997. PMID: 9276182 Review.
-
Coalescence of sleep rhythms and their chronology in corticothalamic networks.Sleep Res Online. 1998;1(1):1-10. Sleep Res Online. 1998. PMID: 11382851 Review.
Cited by
-
Effect of remifentanil on three effect-site concentrations of propofol and their relationship during electroencephalography at loss of response, at maximum alpha power, and at onset of burst suppression: a prospective randomized trial.J Anesth. 2024 Feb 20. doi: 10.1007/s00540-024-03318-4. Online ahead of print. J Anesth. 2024. PMID: 38376589
-
Sensory cortical ensembles exhibit differential coupling to ripples in distinct hippocampal subregions.Curr Biol. 2023 Dec 4;33(23):5185-5198.e4. doi: 10.1016/j.cub.2023.10.073. Epub 2023 Nov 22. Curr Biol. 2023. PMID: 37995696
-
Calcium-Sensitive Subthreshold Oscillations and Electrical Coupling in Principal Cells of Mouse Dorsal Cochlear Nucleus.J Neurosci. 2024 Feb 7;44(6):e0106202023. doi: 10.1523/JNEUROSCI.0106-20.2023. J Neurosci. 2024. PMID: 37968120
-
Optogenetic targeting of astrocytes restores slow brain rhythm function and slows Alzheimer's disease pathology.Sci Rep. 2023 Aug 11;13(1):13075. doi: 10.1038/s41598-023-40402-3. Sci Rep. 2023. PMID: 37567942 Free PMC article.
-
Optogenetic Targeting of Astrocytes Restores Slow Brain Rhythm Function and Slows Alzheimer's Disease Pathology.Res Sq [Preprint]. 2023 Apr 25:rs.3.rs-2813056. doi: 10.21203/rs.3.rs-2813056/v1. Res Sq. 2023. PMID: 37163040 Free PMC article. Updated. Preprint.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous