A possible neuronal basis for representation of acoustic scenes in auditory cortex of the big brown bat

Nature. 1993 Aug 12;364(6438):620-3. doi: 10.1038/364620a0.


Behavioural studies and field observations demonstrate that echolocating bats simultaneously perceive range, direction and shape of multiple objects in the environment as acoustic images derived from echoes. Cortical echo delay-tuned neurons contribute to the perception of object range, because focal inactivation of these neurons disrupts behavioural discrimination of range. We report here that response properties of delay-tuned neurons in the cortical tonotopic area of the bat, Eptesicus, transform the sequential arrival times of echoes with different delays into a concurrent, accumulating neural representation of multiple objects at different ranges. The sharpness of delay tuning systematically increases at each best delay in a subpopulation of these neurons while responses to echoes at different delays are accumulated. The resulting concurrent, multiresolution representation of echo delay corresponds to neural implementation of a common representation of images used in computational vision and may provide the basis for representing acoustic images of multiple objects as acoustic 'scenes'.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Auditory Cortex / cytology
  • Auditory Cortex / physiology*
  • Brain Mapping
  • Chiroptera / anatomy & histology
  • Chiroptera / physiology*
  • Echolocation / physiology*
  • Neurons / physiology*
  • Reaction Time / physiology