Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle
- PMID: 8354269
- DOI: 10.1111/j.1432-1033.1993.tb18074.x
Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle
Abstract
The phototrophic bacterium Chloroflexus aurantiacus can grow autotrophically but seems not to assimilate CO2 via any of the known autotrophic pathways. Holo [Holo, H. (1989) Arch. Microbiol. 151, 252-256] proposed a new pathway in which 3-hydroxypropionate is formed from acetyl-CoA. Previous studies excluded the operation of known CO2 fixation pathways and provided indirect evidence for the suggested pathway based on 13C-labelling experiments. Here all enzyme activities of the postulated cyclic CO2 fixation mechanism are demonstrated in vitro. In essence, acetyl-CoA is carboxylated and reductively converted via 3-hydroxypropionate to propionyl-CoA. Propionyl-CoA is carboxylated and converted via succinyl-CoA and CoA transfer to malyl-CoA. Malyl-CoA is cleaved to acetyl-CoA and glyoxylate. Thereby, the first CO2 acceptor molecule acetyl-CoA is regenerated, completing the cycle and the net CO2 fixation product glyoxylate is released. This cycle represents the fourth autotrophic pathway in nature and is designated the 3-hydroxypropionate cycle.
Similar articles
-
Autotrophic CO(2) fixation by Chloroflexus aurantiacus: study of glyoxylate formation and assimilation via the 3-hydroxypropionate cycle.J Bacteriol. 2001 Jul;183(14):4305-16. doi: 10.1128/JB.183.14.4305-4316.2001. J Bacteriol. 2001. PMID: 11418572 Free PMC article.
-
Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus.Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21317-22. doi: 10.1073/pnas.0908356106. Epub 2009 Dec 2. Proc Natl Acad Sci U S A. 2009. PMID: 19955419 Free PMC article.
-
Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic Crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation.J Bacteriol. 1999 Feb;181(4):1088-98. doi: 10.1128/JB.181.4.1088-1098.1999. J Bacteriol. 1999. PMID: 9973333 Free PMC article.
-
Unfamiliar metabolic links in the central carbon metabolism.J Biotechnol. 2014 Dec 20;192 Pt B:314-22. doi: 10.1016/j.jbiotec.2014.02.015. Epub 2014 Feb 24. J Biotechnol. 2014. PMID: 24576434 Review.
-
Occurrence, biochemistry and possible biotechnological application of the 3-hydroxypropionate cycle.Appl Microbiol Biotechnol. 2004 Jun;64(5):605-10. doi: 10.1007/s00253-003-1540-z. Epub 2004 Feb 28. Appl Microbiol Biotechnol. 2004. PMID: 14997352 Review.
Cited by
-
Production of succinate with two CO2 fixation reactions from fatty acids in Cupriavidus necator H16.Microb Cell Fact. 2024 Jul 5;23(1):194. doi: 10.1186/s12934-024-02470-6. Microb Cell Fact. 2024. PMID: 38970033 Free PMC article.
-
Engineering Rubisco to enhance CO2 utilization.Synth Syst Biotechnol. 2023 Dec 27;9(1):55-68. doi: 10.1016/j.synbio.2023.12.006. eCollection 2024 Mar. Synth Syst Biotechnol. 2023. PMID: 38273863 Free PMC article. Review.
-
Research Progress in Improving Photosynthetic Efficiency.Int J Mol Sci. 2023 May 26;24(11):9286. doi: 10.3390/ijms24119286. Int J Mol Sci. 2023. PMID: 37298238 Free PMC article. Review.
-
Structural basis of a bi-functional malonyl-CoA reductase (MCR) from the photosynthetic green non-sulfur bacterium Roseiflexus castenholzii.mBio. 2023 Aug 31;14(4):e0323322. doi: 10.1128/mbio.03233-22. Epub 2023 Jun 6. mBio. 2023. PMID: 37278533 Free PMC article.
-
Enzymatic Conversion of CO2: From Natural to Artificial Utilization.Chem Rev. 2023 May 10;123(9):5702-5754. doi: 10.1021/acs.chemrev.2c00581. Epub 2023 Jan 24. Chem Rev. 2023. PMID: 36692850 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
