Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Aug 1;215(3):633-43.
doi: 10.1111/j.1432-1033.1993.tb18074.x.

Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle

Affiliations
Free article

Enzymes of a novel autotrophic CO2 fixation pathway in the phototrophic bacterium Chloroflexus aurantiacus, the 3-hydroxypropionate cycle

G Strauss et al. Eur J Biochem. .
Free article

Abstract

The phototrophic bacterium Chloroflexus aurantiacus can grow autotrophically but seems not to assimilate CO2 via any of the known autotrophic pathways. Holo [Holo, H. (1989) Arch. Microbiol. 151, 252-256] proposed a new pathway in which 3-hydroxypropionate is formed from acetyl-CoA. Previous studies excluded the operation of known CO2 fixation pathways and provided indirect evidence for the suggested pathway based on 13C-labelling experiments. Here all enzyme activities of the postulated cyclic CO2 fixation mechanism are demonstrated in vitro. In essence, acetyl-CoA is carboxylated and reductively converted via 3-hydroxypropionate to propionyl-CoA. Propionyl-CoA is carboxylated and converted via succinyl-CoA and CoA transfer to malyl-CoA. Malyl-CoA is cleaved to acetyl-CoA and glyoxylate. Thereby, the first CO2 acceptor molecule acetyl-CoA is regenerated, completing the cycle and the net CO2 fixation product glyoxylate is released. This cycle represents the fourth autotrophic pathway in nature and is designated the 3-hydroxypropionate cycle.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources