Metabolic polymorphisms

Pharmacol Ther. Feb-Mar 1993;57(2-3):129-60. doi: 10.1016/0163-7258(93)90053-g.


Polymorphisms have been detected in a variety of xenobiotic-metabolizing enzymes at both the phenotypic and genotypic level. In the case of four enzymes, the cytochrome P450 CYP2D6, glutathione S-transferase mu, N-acetyltransferase 2 and serum cholinesterase, the majority of mutations which give rise to a defective phenotype have now been identified. Another group of enzymes show definite polymorphism at the phenotypic level but the exact genetic mechanisms responsible are not yet clear. These enzymes include the cytochromes P450 CYP1A1, CYP1A2 and a CYP2C form which metabolizes mephenytoin, a flavin-linked monooxygenase (fish-odour syndrome), paraoxonase, UDP-glucuronosyltransferase (Gilbert's syndrome) and thiopurine S-methyltransferase. In the case of a further group of enzymes, there is some evidence for polymorphism at either the phenotypic or genotypic level but this has not been unambiguously demonstrated. Examples of this class include the cytochrome P450 enzymes CYP2A6, CYP2E1, CYP2C9 and CYP3A4, xanthine oxidase, an S-oxidase which metabolizes carbocysteine, epoxide hydrolase, two forms of sulphotransferase and several methyltransferases. The nature of all these polymorphisms and possible polymorphisms is discussed in detail, with particular reference to the effects of this variation on drug metabolism and susceptibility to chemically-induced diseases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Humans
  • Metabolism / genetics*
  • Polymorphism, Genetic / genetics
  • Polymorphism, Genetic / physiology*